Neurogranin-MYH9 interaction regulates cytoskeletal remodeling in cerebral vasculature.

IF 6.2 1区 医学 Q1 NEUROSCIENCES
Adesewa Akande, Ji Eun Park, Rona Scott, J Steven Alexander, Hyung W Nam
{"title":"Neurogranin-MYH9 interaction regulates cytoskeletal remodeling in cerebral vasculature.","authors":"Adesewa Akande, Ji Eun Park, Rona Scott, J Steven Alexander, Hyung W Nam","doi":"10.1186/s12987-025-00709-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neurogranin (Ng), a known regulator of neuronal Ca²⁺-calmodulin (CaM) signaling, is linked to Alzheimer's disease. Though well-studied in neurons, Ng is also expressed in brain vasculature, where its function remains unclear. To investigate Ng's role in brain microvascular endothelial cells, we defined its interactome using immunoprecipitation-mass spectrometry (IP-MS) under high- and low-Ca²⁺ conditions. Among 119 Ng-binding proteins, we discovered a novel interaction between Ng and MYH9, a key regulator of cytoskeletal remodeling. Ng-MYH9 binding was prominent in high Ca²⁺ and validated via CaM affinity pulldown and proximity ligation assays. Ng knockdown reduced F-actin levels, while MYH9 knockdown decreased both Ng and F-actin. Loss of Ng-MYH9 also impaired AKT-GSK3β signaling and elevated the endothelial activation marker VCAM1. Ng-null mice exhibited disrupted brain microvascular architecture and reduced MYH9 expression in endothelial cells. These findings reveal a novel Ng pathway promoting MYH9-dependent cytoskeletal remodeling and a potential role in maintaining blood-brain barrier integrity, a previously unrecognized function for Ng in brain health and Alzheimer's disease.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"94"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00709-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurogranin (Ng), a known regulator of neuronal Ca²⁺-calmodulin (CaM) signaling, is linked to Alzheimer's disease. Though well-studied in neurons, Ng is also expressed in brain vasculature, where its function remains unclear. To investigate Ng's role in brain microvascular endothelial cells, we defined its interactome using immunoprecipitation-mass spectrometry (IP-MS) under high- and low-Ca²⁺ conditions. Among 119 Ng-binding proteins, we discovered a novel interaction between Ng and MYH9, a key regulator of cytoskeletal remodeling. Ng-MYH9 binding was prominent in high Ca²⁺ and validated via CaM affinity pulldown and proximity ligation assays. Ng knockdown reduced F-actin levels, while MYH9 knockdown decreased both Ng and F-actin. Loss of Ng-MYH9 also impaired AKT-GSK3β signaling and elevated the endothelial activation marker VCAM1. Ng-null mice exhibited disrupted brain microvascular architecture and reduced MYH9 expression in endothelial cells. These findings reveal a novel Ng pathway promoting MYH9-dependent cytoskeletal remodeling and a potential role in maintaining blood-brain barrier integrity, a previously unrecognized function for Ng in brain health and Alzheimer's disease.

神经粒蛋白- myh9相互作用调节脑血管细胞骨架重塑。
神经颗粒蛋白(Ng)是一种已知的神经元钙调蛋白(CaM)信号的调节剂,与阿尔茨海默病有关。虽然在神经元中有很好的研究,但Ng也在脑血管系统中表达,其功能尚不清楚。为了研究Ng在脑微血管内皮细胞中的作用,我们在高钙和低钙条件下使用免疫沉淀-质谱(IP-MS)定义了它的相互作用组。在119个Ng结合蛋白中,我们发现了Ng和MYH9之间的一种新的相互作用,MYH9是细胞骨架重塑的关键调节因子。Ng-MYH9在高Ca 2 +中结合突出,并通过CaM亲和下拉和邻近连接实验验证。Ng敲低可降低F-actin水平,而MYH9敲低可同时降低Ng和F-actin水平。Ng-MYH9的缺失也会损害AKT-GSK3β信号传导,并升高内皮活化标志物VCAM1。Ng-null小鼠表现出脑微血管结构破坏和内皮细胞MYH9表达降低。这些发现揭示了一种新的Ng通路促进myh9依赖性细胞骨架重塑,并在维持血脑屏障完整性方面发挥潜在作用,这是Ng在大脑健康和阿尔茨海默病中以前未被认识到的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信