Invertebrate glial barriers as a model for understanding blood-brain barrier evolution.

IF 6.2 1区 医学 Q1 NEUROSCIENCES
Sofía Paredes-González, Jennifer Salazar-Tirado, Antonia Recabal-Beyer, Esteban G Contreras
{"title":"Invertebrate glial barriers as a model for understanding blood-brain barrier evolution.","authors":"Sofía Paredes-González, Jennifer Salazar-Tirado, Antonia Recabal-Beyer, Esteban G Contreras","doi":"10.1186/s12987-025-00694-1","DOIUrl":null,"url":null,"abstract":"<p><p>Biological barriers play a crucial role in maintaining tissue homeostasis across diverse animal taxa, from invertebrates to mammals. In the nervous system, they regulate ion balance, metabolic exchange, and immune protection, ensuring proper neuronal function. In arthropods, the blood-brain barrier (BBB) is primarily formed by the perineurium, consisting of perineurial and subperineurial glial cells that establish septate junctions to restrict diffusion. Cephalopods, such as octopuses and squids, possess two distinct BBBs: one formed by glial cells and another by pericytes, depending on the type of brain blood vessel. Similarly, in vertebrates such as sharks, skate, rays, and sturgeons, the BB is also formed by glial cells. In contrast, the BBBs of most vertebrates rely on endothelial tight junctions, although astrocytes and pericytes contribute significantly to BBB maintenance and function. Importantly, glial barriers also exist in vertebrates, including the blood-nerve barrier (BNB), and the blood-cerebrospinal fluid barrier (BCSFB). Despite structural differences, the molecular mechanisms governing barrier formation, function, and plasticity show remarkable evolutionary conservation between invertebrates and vertebrates. In this review, we examine the diversity of glial barriers, their structural and functional parallels, evolutionary origins, and the key molecular pathways that regulate their development.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"93"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00694-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological barriers play a crucial role in maintaining tissue homeostasis across diverse animal taxa, from invertebrates to mammals. In the nervous system, they regulate ion balance, metabolic exchange, and immune protection, ensuring proper neuronal function. In arthropods, the blood-brain barrier (BBB) is primarily formed by the perineurium, consisting of perineurial and subperineurial glial cells that establish septate junctions to restrict diffusion. Cephalopods, such as octopuses and squids, possess two distinct BBBs: one formed by glial cells and another by pericytes, depending on the type of brain blood vessel. Similarly, in vertebrates such as sharks, skate, rays, and sturgeons, the BB is also formed by glial cells. In contrast, the BBBs of most vertebrates rely on endothelial tight junctions, although astrocytes and pericytes contribute significantly to BBB maintenance and function. Importantly, glial barriers also exist in vertebrates, including the blood-nerve barrier (BNB), and the blood-cerebrospinal fluid barrier (BCSFB). Despite structural differences, the molecular mechanisms governing barrier formation, function, and plasticity show remarkable evolutionary conservation between invertebrates and vertebrates. In this review, we examine the diversity of glial barriers, their structural and functional parallels, evolutionary origins, and the key molecular pathways that regulate their development.

Abstract Image

Abstract Image

Abstract Image

无脊椎动物神经胶质屏障作为理解血脑屏障进化的模型。
从无脊椎动物到哺乳动物,生物屏障在维持组织稳态中起着至关重要的作用。在神经系统中,它们调节离子平衡、代谢交换和免疫保护,确保适当的神经元功能。在节肢动物中,血脑屏障(BBB)主要由神经周围膜形成,由神经周围膜和神经周围下胶质细胞组成,它们建立分隔连接以限制扩散。头足类动物,如章鱼和鱿鱼,拥有两种不同的血脑屏障:一种是由神经胶质细胞形成的,另一种是由周细胞形成的,这取决于脑血管的类型。同样,在脊椎动物,如鲨鱼、鳐鱼、鳐鱼和鲟鱼中,BB也是由神经胶质细胞形成的。相比之下,大多数脊椎动物的血脑屏障依赖于内皮紧密连接,尽管星形胶质细胞和周细胞对血脑屏障的维持和功能有重要贡献。重要的是,神经胶质屏障也存在于脊椎动物中,包括血神经屏障(BNB)和血脑脊液屏障(BCSFB)。尽管在结构上存在差异,但控制屏障形成、功能和可塑性的分子机制在无脊椎动物和脊椎动物之间表现出显著的进化守恒。在这篇综述中,我们研究了胶质屏障的多样性,它们的结构和功能的相似性,进化起源,以及调节它们发育的关键分子途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信