{"title":"The Contribution of Wearable Devices and Artificial Intelligence to Promoting Healthy Aging.","authors":"Natarajan Sisubalan, Natarajan Vijay, Periyanaina Kesika, Manoharan Newbegin, Ramadoss Shalini, Bhagavathi Sundaram Sivamaruthi, Chaiyavat Chaiysut","doi":"10.2174/0113892010390500250911104231","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Healthy aging involves consistently maximizing opportunities to maintain and enhance physical and mental well-being, fostering independence, and sustaining a high quality of life. This review examines recent technological innovations aimed at promoting the well-being of older adults. The scope encompasses wearable devices and telemedicine, showcasing their potential to enhance the health and overall well-being of older individuals. The review highlights the crucial role of assistive technologies, including mobility aids, hearing aids, and adaptive home devices, in addressing the specific challenges associated with aging.</p><p><strong>Methods: </strong>The relevant literature was collected and selected based on the objective of the study and reviewed.</p><p><strong>Results: </strong>Digital technologies, including brain-computer interfaces (BCIs), are explored as potential solutions to enhance communication between healthcare providers and aging patients, considering engagement levels and active interaction. Sophisticated BCIs, such as electroencephalograms, electrocorticography, and signal modeling for real-time identification, play a crucial role in event detection, with machine learning algorithms enhancing signal processing for accurate decoding. The exploration of smart wearable systems for health monitoring emerges as a dynamic and promising field in the context of aging.</p><p><strong>Discussion: </strong>Fitbit® showcases accurate step counting, making it suitable for monitoring physical activity in older adults engaged in slow walking. ActiGraph™ is evaluated for accuracy in monitoring physical activity in older adults, with results indicating reliable concurrence with Fitbit® devices. The study identifies several limitations, including sample size constraints, challenges in keeping pace with technological advancements, and the need for further investigation into the suitability of fitness trackers for individuals with significant mobility impairments.</p><p><strong>Conclusion: </strong>The evolving landscape of wearable technologies, exemplified by Fitbit®, Acti- Graph™, and other interventions, holds substantial promise for reshaping healthcare approaches for the aging population. Addressing the limitations will be crucial as research progresses to ensure the effective and ethical integration of wearables into geriatric care, maximizing their potential benefits.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010390500250911104231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Healthy aging involves consistently maximizing opportunities to maintain and enhance physical and mental well-being, fostering independence, and sustaining a high quality of life. This review examines recent technological innovations aimed at promoting the well-being of older adults. The scope encompasses wearable devices and telemedicine, showcasing their potential to enhance the health and overall well-being of older individuals. The review highlights the crucial role of assistive technologies, including mobility aids, hearing aids, and adaptive home devices, in addressing the specific challenges associated with aging.
Methods: The relevant literature was collected and selected based on the objective of the study and reviewed.
Results: Digital technologies, including brain-computer interfaces (BCIs), are explored as potential solutions to enhance communication between healthcare providers and aging patients, considering engagement levels and active interaction. Sophisticated BCIs, such as electroencephalograms, electrocorticography, and signal modeling for real-time identification, play a crucial role in event detection, with machine learning algorithms enhancing signal processing for accurate decoding. The exploration of smart wearable systems for health monitoring emerges as a dynamic and promising field in the context of aging.
Discussion: Fitbit® showcases accurate step counting, making it suitable for monitoring physical activity in older adults engaged in slow walking. ActiGraph™ is evaluated for accuracy in monitoring physical activity in older adults, with results indicating reliable concurrence with Fitbit® devices. The study identifies several limitations, including sample size constraints, challenges in keeping pace with technological advancements, and the need for further investigation into the suitability of fitness trackers for individuals with significant mobility impairments.
Conclusion: The evolving landscape of wearable technologies, exemplified by Fitbit®, Acti- Graph™, and other interventions, holds substantial promise for reshaping healthcare approaches for the aging population. Addressing the limitations will be crucial as research progresses to ensure the effective and ethical integration of wearables into geriatric care, maximizing their potential benefits.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.