SpaCross deciphers spatial structures and corrects batch effects in multi-slice spatially resolved transcriptomics.

IF 5.1 1区 生物学 Q1 BIOLOGY
Donghai Fang, Wenwen Min
{"title":"SpaCross deciphers spatial structures and corrects batch effects in multi-slice spatially resolved transcriptomics.","authors":"Donghai Fang, Wenwen Min","doi":"10.1038/s42003-025-08810-5","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially Resolved Transcriptomics (SRT) has revolutionized tissue architecture analysis by integrating gene expression with spatial coordinates. However, existing spatial domain identification methods struggle with unsupervised learning constraints, lack of implicit supervision in latent space, and challenges in balancing local spatial continuity with global semantic consistency, particularly in multi-slice integration. To address these issues, we propose SpaCross, a comprehensive deep learning framework for SRT that enhances spatial pattern recognition and cross-slice consistency. SpaCross employs a cross-masked graph autoencoder to reconstruct gene expression features while preserving spatial relationships and mitigating identity mapping issues. A cross-masked latent consistency module reinforces implicit constraints on latent representations, improving feature robustness. More importantly, an adaptive spatial-semantic graph structure dynamically integrates local and global contextual information, enabling effective multi-slice integration. Extensive evaluations demonstrate that SpaCross outperforms thirteen state-of-the-art methods on single-slice datasets and achieves robust batch effect correction while preserving biologically meaningful spatial architectures in multi-slice integration. Notably, SpaCross integrates embryonic mouse tissues across developmental stages, identifying conserved regions and uncovering stage-specific structures such as the dorsal root ganglion. In the heart domain, it reconstructs developmental trajectories capturing key transcriptional transitions and gene programs associated with cardiac maturation.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1393"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08810-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially Resolved Transcriptomics (SRT) has revolutionized tissue architecture analysis by integrating gene expression with spatial coordinates. However, existing spatial domain identification methods struggle with unsupervised learning constraints, lack of implicit supervision in latent space, and challenges in balancing local spatial continuity with global semantic consistency, particularly in multi-slice integration. To address these issues, we propose SpaCross, a comprehensive deep learning framework for SRT that enhances spatial pattern recognition and cross-slice consistency. SpaCross employs a cross-masked graph autoencoder to reconstruct gene expression features while preserving spatial relationships and mitigating identity mapping issues. A cross-masked latent consistency module reinforces implicit constraints on latent representations, improving feature robustness. More importantly, an adaptive spatial-semantic graph structure dynamically integrates local and global contextual information, enabling effective multi-slice integration. Extensive evaluations demonstrate that SpaCross outperforms thirteen state-of-the-art methods on single-slice datasets and achieves robust batch effect correction while preserving biologically meaningful spatial architectures in multi-slice integration. Notably, SpaCross integrates embryonic mouse tissues across developmental stages, identifying conserved regions and uncovering stage-specific structures such as the dorsal root ganglion. In the heart domain, it reconstructs developmental trajectories capturing key transcriptional transitions and gene programs associated with cardiac maturation.

SpaCross破译空间结构和纠正多层空间分解转录组的批效应。
空间解析转录组学(SRT)通过将基因表达与空间坐标相结合,彻底改变了组织结构分析。然而,现有的空间域识别方法存在无监督学习约束、潜在空间缺乏隐式监督、难以平衡局部空间连续性和全局语义一致性等问题,特别是在多片集成中。为了解决这些问题,我们提出了SpaCross,这是一个全面的SRT深度学习框架,可以增强空间模式识别和横切片一致性。SpaCross采用交叉掩膜图自编码器来重建基因表达特征,同时保留空间关系并减轻身份映射问题。交叉掩码的潜在一致性模块加强了对潜在表示的隐式约束,提高了特征的鲁棒性。更重要的是,自适应的空间语义图结构动态集成了局部和全局上下文信息,实现了有效的多片集成。广泛的评估表明,SpaCross在单片数据集上优于13种最先进的方法,并在多片集成中实现了鲁棒的批效果校正,同时保留了具有生物学意义的空间结构。值得注意的是,SpaCross整合了不同发育阶段的胚胎小鼠组织,确定了保守区域并揭示了特定阶段的结构,如背根神经节。在心脏领域,它重建了与心脏成熟相关的关键转录转变和基因程序的发育轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信