{"title":"Exploring the Potential of Nuciferine in Diabetes Management via PTGS2 Pathway Targeting by Network Analysis and in Silico Modeling Approach.","authors":"N Sridevi, Thirumal Margesan","doi":"10.2174/0109298673382481250908210052","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetes mellitus, a chronic metabolic disorder characterized by elevated blood glucose levels, has emerged as a significant global health burden. Chronic inflammation and insulin resistance are central to the pathogenesis of non-insulin- dependent (type 2) diabetes mellitus. PTGS2 (prostaglandin-endoperoxide synthase 2) has been implicated in inflammatory pathways associated with diabetic complications, making it a potential therapeutic target.</p><p><strong>Methods: </strong>Advanced computational methodologies were employed to identify potential natural compounds with anti-diabetic activity. Techniques included network pharmacology to establish compound-target-pathway relationships and in silico molecular docking to evaluate binding affinity and interaction profiles of selected phytochemicals with PTGS2.</p><p><strong>Results: </strong>PTGS2 and its downstream prostaglandin pathways were strongly associated with diabetic inflammation and insulin resistance. Molecular docking identified Corytuberine and Nuciferine as having high binding affinities with PTGS2. Network pharmacology analysis confirmed Nuciferine's connection to PTGS2, supporting its role as a bioactive agent targeting diabetes-related inflammatory processes.</p><p><strong>Discussion: </strong>The findings suggest that PTGS2 contributes to the progression of insulin resistance and chronic inflammation in type 2 diabetes. Targeting this enzyme with bioactive compounds such as Nuciferine may offer therapeutic benefits. However, translational studies and clinical trials are essential to validate these computational predictions and assess safety and efficacy in vivo.</p><p><strong>Conclusion: </strong>Nuciferine exhibits promising potential in modulating PTGS2 activity and improving insulin sensitivity. Continued research and clinical validation are needed to confirm its efficacy and support the development of novel anti-diabetic therapies targeting inflammatory pathways.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673382481250908210052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Diabetes mellitus, a chronic metabolic disorder characterized by elevated blood glucose levels, has emerged as a significant global health burden. Chronic inflammation and insulin resistance are central to the pathogenesis of non-insulin- dependent (type 2) diabetes mellitus. PTGS2 (prostaglandin-endoperoxide synthase 2) has been implicated in inflammatory pathways associated with diabetic complications, making it a potential therapeutic target.
Methods: Advanced computational methodologies were employed to identify potential natural compounds with anti-diabetic activity. Techniques included network pharmacology to establish compound-target-pathway relationships and in silico molecular docking to evaluate binding affinity and interaction profiles of selected phytochemicals with PTGS2.
Results: PTGS2 and its downstream prostaglandin pathways were strongly associated with diabetic inflammation and insulin resistance. Molecular docking identified Corytuberine and Nuciferine as having high binding affinities with PTGS2. Network pharmacology analysis confirmed Nuciferine's connection to PTGS2, supporting its role as a bioactive agent targeting diabetes-related inflammatory processes.
Discussion: The findings suggest that PTGS2 contributes to the progression of insulin resistance and chronic inflammation in type 2 diabetes. Targeting this enzyme with bioactive compounds such as Nuciferine may offer therapeutic benefits. However, translational studies and clinical trials are essential to validate these computational predictions and assess safety and efficacy in vivo.
Conclusion: Nuciferine exhibits promising potential in modulating PTGS2 activity and improving insulin sensitivity. Continued research and clinical validation are needed to confirm its efficacy and support the development of novel anti-diabetic therapies targeting inflammatory pathways.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.