Yohann Chapuis, Daniel Ackermann, Florian Martinez, Zoé Lecomte, Andréa Dibamba, Louise Labeyrie, Noëmie Coudon, Ahmed Bentaleb, Jean-Paul Douliez, Etienne Ducrot, Nicolas Martin, Frédéric Nallet, Laurence Navailles
{"title":"Emulsification of lyotropic lamellar phases: new formulation routes for stabilized water-in-water emulsions.","authors":"Yohann Chapuis, Daniel Ackermann, Florian Martinez, Zoé Lecomte, Andréa Dibamba, Louise Labeyrie, Noëmie Coudon, Ahmed Bentaleb, Jean-Paul Douliez, Etienne Ducrot, Nicolas Martin, Frédéric Nallet, Laurence Navailles","doi":"10.1039/d5sm00748h","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilizing water-in-water emulsions remains a key challenge in soft matter science, with growing relevance for applications such as microencapsulation in food technology, bioseparation, and the construction of synthetic cells. Building on recent advances in interfacial self-assembly of fatty acid bilayers, we present here a robust and tunable strategy for stabilizing polyethylene glycol/dextran aqueous two-phase system emulsions using lyotropic lamellar phases doped with phase-separating polymers. We show that these lamellar phases spontaneously adsorb at the droplet interface, forming a stabilizing interfacial coating. By comparing multiple formulation routes, including lamellar phase pre-assembly with or without excess solvent and the previously used \"one-pot\" method, we demonstrate that all approaches yield equivalent droplet stabilization. Systematic variation of the lamellar phase concentration reveals a critical threshold necessary for emulsion stability. Beyond this threshold, excess lamellar material is dispersed into the continuous phase. A simple geometric model supports the hypothesis that this critical concentration corresponds to the amount required to fully coat the droplet interfaces. This strategy offers a straightforward yet precise formulation route that leverages the self-assembly and dilution behavior of lamellar phases, opening new avenues for designing fully aqueous emulsions stabilized without solid particles or synthetic surfactants.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00748h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stabilizing water-in-water emulsions remains a key challenge in soft matter science, with growing relevance for applications such as microencapsulation in food technology, bioseparation, and the construction of synthetic cells. Building on recent advances in interfacial self-assembly of fatty acid bilayers, we present here a robust and tunable strategy for stabilizing polyethylene glycol/dextran aqueous two-phase system emulsions using lyotropic lamellar phases doped with phase-separating polymers. We show that these lamellar phases spontaneously adsorb at the droplet interface, forming a stabilizing interfacial coating. By comparing multiple formulation routes, including lamellar phase pre-assembly with or without excess solvent and the previously used "one-pot" method, we demonstrate that all approaches yield equivalent droplet stabilization. Systematic variation of the lamellar phase concentration reveals a critical threshold necessary for emulsion stability. Beyond this threshold, excess lamellar material is dispersed into the continuous phase. A simple geometric model supports the hypothesis that this critical concentration corresponds to the amount required to fully coat the droplet interfaces. This strategy offers a straightforward yet precise formulation route that leverages the self-assembly and dilution behavior of lamellar phases, opening new avenues for designing fully aqueous emulsions stabilized without solid particles or synthetic surfactants.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.