Controlling the local compliances of cruciform samples to probe equibiaxial failure.

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-10-01 DOI:10.1039/d5sm00644a
Majed N Saadawi, Christopher W Barney
{"title":"Controlling the local compliances of cruciform samples to probe equibiaxial failure.","authors":"Majed N Saadawi, Christopher W Barney","doi":"10.1039/d5sm00644a","DOIUrl":null,"url":null,"abstract":"<p><p>Multiaxial loading states are known to develop in common design structures such as corners, joints, and thin-walled shells. Despite the prevalence of multiaxial stress states in design, the characterization of multiaxial behavior in soft polymers and gels has lagged behind that for stiff materials where standards have been developed to perform such measurements. Given the lack of standardization, determining an appropriate geometry and method to probe the multiaxial mechanical response of soft materials falls under the purview of the individual researcher. Herein cruciform samples capable of quantifying the failure behavior of soft polymers under biaxial tension are designed. Using digital image correlation to quantify the local deformations, it is found that controlling the relative compliances of the legs to the center square is key to observing multiaxial failure. Further, controlling the transverse stiffness of the legs is found to significantly impact the uniformity of the deformation state that develops in the center square. Finally, the failure stresses measured in cruciform samples with varied corner geometry are found to be in reasonable agreement with independent measurements of the failure stress from uniaxial extension and equibiaxial inflation. These findings have strong implications for the design of structures where multiaxial stress states develop during regular use.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00644a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multiaxial loading states are known to develop in common design structures such as corners, joints, and thin-walled shells. Despite the prevalence of multiaxial stress states in design, the characterization of multiaxial behavior in soft polymers and gels has lagged behind that for stiff materials where standards have been developed to perform such measurements. Given the lack of standardization, determining an appropriate geometry and method to probe the multiaxial mechanical response of soft materials falls under the purview of the individual researcher. Herein cruciform samples capable of quantifying the failure behavior of soft polymers under biaxial tension are designed. Using digital image correlation to quantify the local deformations, it is found that controlling the relative compliances of the legs to the center square is key to observing multiaxial failure. Further, controlling the transverse stiffness of the legs is found to significantly impact the uniformity of the deformation state that develops in the center square. Finally, the failure stresses measured in cruciform samples with varied corner geometry are found to be in reasonable agreement with independent measurements of the failure stress from uniaxial extension and equibiaxial inflation. These findings have strong implications for the design of structures where multiaxial stress states develop during regular use.

控制十字形试样的局部柔度,探测等双轴破坏。
已知多轴载荷状态在常见设计结构中发展,如拐角、接头和薄壁壳。尽管设计中普遍存在多轴应力状态,但软聚合物和凝胶的多轴行为表征仍落后于已开发标准来执行此类测量的硬材料。由于缺乏标准化,确定适当的几何形状和方法来探测软材料的多轴力学响应属于个别研究人员的职权范围。本文设计了能够量化软聚合物在双轴拉伸作用下破坏行为的十字形试样。利用数字图像相关技术对局部变形进行量化,发现控制支腿与中心方的相对柔度是观察多轴破坏的关键。此外,研究发现,控制腿的横向刚度可以显著影响中心广场上发展的变形状态的均匀性。最后,在不同转角几何形状的十字形试样中所测得的破坏应力与单轴拉伸和等双轴膨胀所测得的破坏应力基本一致。这些发现对在常规使用过程中发展多轴应力状态的结构设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信