{"title":"Thermophilic anaerobic digestion of polylactic acid, polyethylene and polypropylene microplastics: effect of inoculum-substrate ratio and microbiome.","authors":"Mahesh Mohan, Zain Ul Abedien, Prasad Kaparaju","doi":"10.1007/s10532-025-10186-6","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVS<sub>added</sub> at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVS<sub>added</sub> and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota, genus D8A-2, Thermovirga and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of Methanothermobacter indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":"95"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-025-10186-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVSadded at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVSadded and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota, genus D8A-2, Thermovirga and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of Methanothermobacter indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.