Advancing breast cancer therapy through microneedle technology: a next-generation drug delivery approach

IF 3.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Rajshree Ahire, Kavita Singh
{"title":"Advancing breast cancer therapy through microneedle technology: a next-generation drug delivery approach","authors":"Rajshree Ahire,&nbsp;Kavita Singh","doi":"10.1007/s10544-025-00770-1","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer (BC) continues to be the most frequently diagnosed malignancy and the primary cause of cancer-related deaths among women globally. The traditional treatment modalities, such as chemotherapy, surgery, and radiotherapy, are often associated with significant toxicity to healthy tissues and systemic side effects, highlighting the pressing need for safer and more targeted therapeutic strategies. Recently, microneedle innovation has become an evident alternative for delivering anti-neoplastic agents, offering minimally invasive, transdermal administration that can bypass hepatic metabolism and reduce systemic toxicity. Microneedle (MNs) arrays hold potential not only for drug delivery but also for vaccination, diagnostic sampling, and targeted therapy in BC management. However, despite these promising attributes, there exists a notable gap in the scientific literature specifically addressing the application of microneedles in breast cancer therapy, with relatively few comprehensive studies in this domain. This review aims to bridge that gap by summarizing recent advancements in MN-based strategies for breast cancer treatment. It highlights the ability of MNs to enable simultaneous drug loading, controlled release, and improved patient compliance through non-invasive administration. Furthermore, the review discusses MN properties, mechanisms of action, therapeutic benefits, relevant clinical trials, patents, and future challenges, thereby providing a valuable resource for researchers and promoting the translation of MN technology into clinical practice for breast cancer management.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00770-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer (BC) continues to be the most frequently diagnosed malignancy and the primary cause of cancer-related deaths among women globally. The traditional treatment modalities, such as chemotherapy, surgery, and radiotherapy, are often associated with significant toxicity to healthy tissues and systemic side effects, highlighting the pressing need for safer and more targeted therapeutic strategies. Recently, microneedle innovation has become an evident alternative for delivering anti-neoplastic agents, offering minimally invasive, transdermal administration that can bypass hepatic metabolism and reduce systemic toxicity. Microneedle (MNs) arrays hold potential not only for drug delivery but also for vaccination, diagnostic sampling, and targeted therapy in BC management. However, despite these promising attributes, there exists a notable gap in the scientific literature specifically addressing the application of microneedles in breast cancer therapy, with relatively few comprehensive studies in this domain. This review aims to bridge that gap by summarizing recent advancements in MN-based strategies for breast cancer treatment. It highlights the ability of MNs to enable simultaneous drug loading, controlled release, and improved patient compliance through non-invasive administration. Furthermore, the review discusses MN properties, mechanisms of action, therapeutic benefits, relevant clinical trials, patents, and future challenges, thereby providing a valuable resource for researchers and promoting the translation of MN technology into clinical practice for breast cancer management.

Graphical abstract

通过微针技术推进乳腺癌治疗:新一代给药方法。
乳腺癌仍然是全球妇女中最常被诊断出的恶性肿瘤,也是癌症相关死亡的主要原因。传统的治疗方式,如化疗、手术和放疗,往往与健康组织的显著毒性和全身副作用有关,这突出表明迫切需要更安全、更有针对性的治疗策略。最近,微针创新已成为抗肿瘤药物的明显替代方案,提供微创、透皮给药,可以绕过肝脏代谢并降低全身毒性。微针(MNs)阵列不仅在药物递送方面具有潜力,而且在疫苗接种、诊断取样和BC管理中的靶向治疗方面也具有潜力。然而,尽管有这些有希望的属性,在专门解决微针在乳腺癌治疗中的应用的科学文献中存在明显的空白,在这一领域的综合研究相对较少。本综述旨在通过总结基于mn的乳腺癌治疗策略的最新进展来弥合这一差距。它强调了MNs能够同时装载药物,控制释放,并通过非侵入性给药提高患者依从性的能力。此外,本文还讨论了锰的特性、作用机制、治疗益处、相关临床试验、专利和未来挑战,从而为研究人员提供宝贵的资源,并促进锰技术在乳腺癌治疗中的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信