Michael D Hunckler, Sophia Kioulaphides, Karen E Martin, Angelica L Torres, Graham F Barber, Stephen W Linderman, Rebecca S Schneider, Andrés J García
{"title":"Synthetic Hydrogels Incorporating Hydrolytic/Nonhydrolytic Macromer Ratios Exhibit Improved Tunability of In Vivo Degradation and Immune Responses.","authors":"Michael D Hunckler, Sophia Kioulaphides, Karen E Martin, Angelica L Torres, Graham F Barber, Stephen W Linderman, Rebecca S Schneider, Andrés J García","doi":"10.1002/adhm.202502475","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolytically degradable hydrogels are widely used as delivery carriers in regenerative medicine. However, the in vivo degradation rate of these materials is difficult to control because of site-specific enzymatic activity, implant design, and disease state, impairing tissue regeneration. Hydrogels with crosslinks that degrade hydrolytically offer an alternate route to tune in vivo degradation profile. In this study, a synthetic 4-arm maleimide-terminated poly(ethylene glycol) (PEG-4MAL) hydrogel system that combines hydrolytic ester-linked PEG-4MAL (PEG-4eMAL) macromer with nondegradable amide-linked PEG-4MAL (PEG-4aMAL) macromer in various stoichiometric ratios to tune the degradability rate is engineered. The macromers are crosslinked with dithiothreitol (DTT) via thiol-maleimide click reaction. Rheological analysis shows that a family of PEG-4eMAL/PEG-4aMAL hydrogels has equivalent mechanical properties, but increasing the PEG-4eMAL content increases the rate of degradation in vitro and in vivo. PEG-4eMAL/PEG-4aMAL hydrogels support high viability of encapsulated human cells. Notably, the ratio of PEG-4eMAL/PEG-4aMAL modulates local immune cell recruitment when implanted in the subcutaneous space. These results establish the use of PEG-4eMAL/PEG-4aMAL hydrogels as a hydrolytically degradable platform to tune in vivo degradation and immune responses.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02475"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteolytically degradable hydrogels are widely used as delivery carriers in regenerative medicine. However, the in vivo degradation rate of these materials is difficult to control because of site-specific enzymatic activity, implant design, and disease state, impairing tissue regeneration. Hydrogels with crosslinks that degrade hydrolytically offer an alternate route to tune in vivo degradation profile. In this study, a synthetic 4-arm maleimide-terminated poly(ethylene glycol) (PEG-4MAL) hydrogel system that combines hydrolytic ester-linked PEG-4MAL (PEG-4eMAL) macromer with nondegradable amide-linked PEG-4MAL (PEG-4aMAL) macromer in various stoichiometric ratios to tune the degradability rate is engineered. The macromers are crosslinked with dithiothreitol (DTT) via thiol-maleimide click reaction. Rheological analysis shows that a family of PEG-4eMAL/PEG-4aMAL hydrogels has equivalent mechanical properties, but increasing the PEG-4eMAL content increases the rate of degradation in vitro and in vivo. PEG-4eMAL/PEG-4aMAL hydrogels support high viability of encapsulated human cells. Notably, the ratio of PEG-4eMAL/PEG-4aMAL modulates local immune cell recruitment when implanted in the subcutaneous space. These results establish the use of PEG-4eMAL/PEG-4aMAL hydrogels as a hydrolytically degradable platform to tune in vivo degradation and immune responses.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.