Metabolic Interplay in Acute Lung Injury: PARK7 Integrates FADS1/2-Dependent PUFA Metabolism and H3K14 Lactylation to Attenuate Endothelial Ferroptosis and Dysfunction.
{"title":"Metabolic Interplay in Acute Lung Injury: PARK7 Integrates FADS1/2-Dependent PUFA Metabolism and H3K14 Lactylation to Attenuate Endothelial Ferroptosis and Dysfunction.","authors":"Jian Xu, Yuhan Wang, Weiqi Mao, Tianchang Wei, Yufan Li, Juan Song, Cuiping Zhang, Xiaoyan Chen, Cuicui Chen, Qingyuan Xu, Xu Wu, Yuanlin Song","doi":"10.1002/advs.202508725","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a severe clinical condition characterized by widespread inflammation and fluid accumulation in the lungs. Endothelial cell (EC) metabolic changes in acute lung injury (ALI) and their relationship to injury remain unclear. Transcriptomic and lipidomic analyses revealed downregulation of PUFA synthesis pathways, particularly omega-3 PUFAs, in pulmonary ECs during LPS-induced ALI. Activation of the PUFA metabolic pathway, through FADS1/2 overexpression or omega-3 fatty acid supplementation, protected ECs from ferroptosis and restored barrier function. In vivo, pulmonary EC-specific overexpression of FADS1/2 contributed to the alleviation of ALI. Overexpression of whole lung FADS1/2, combined with alpha-linolenic acid (ALA) supplementation, also significantly mitigated ALI. PARK7 is identified as an endogenous regulator of FADS1/2, acting through the BMP-BMPR-SMAD1/5/9 signaling. Driven by histone H3K14 lactylation, which is also promoted by the downregulation of FADS1/2, PARK7 upregulation restored FADS1/2 expression and counteracted ferroptosis, thereby forming a protective feedback loop. This study elucidates a novel regulatory axis involving the two major metabolic changes-downregulation of PUFA synthesis and upregulation of histone lactylation-in ALI pathogenesis, which are interconnected through the PARK7-BMP signaling pathway. Targeting this axis offers potential therapeutic strategies for mitigating endothelial dysfunction and ferroptosis in ARDS/ALI.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08725"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508725","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute respiratory distress syndrome (ARDS) is a severe clinical condition characterized by widespread inflammation and fluid accumulation in the lungs. Endothelial cell (EC) metabolic changes in acute lung injury (ALI) and their relationship to injury remain unclear. Transcriptomic and lipidomic analyses revealed downregulation of PUFA synthesis pathways, particularly omega-3 PUFAs, in pulmonary ECs during LPS-induced ALI. Activation of the PUFA metabolic pathway, through FADS1/2 overexpression or omega-3 fatty acid supplementation, protected ECs from ferroptosis and restored barrier function. In vivo, pulmonary EC-specific overexpression of FADS1/2 contributed to the alleviation of ALI. Overexpression of whole lung FADS1/2, combined with alpha-linolenic acid (ALA) supplementation, also significantly mitigated ALI. PARK7 is identified as an endogenous regulator of FADS1/2, acting through the BMP-BMPR-SMAD1/5/9 signaling. Driven by histone H3K14 lactylation, which is also promoted by the downregulation of FADS1/2, PARK7 upregulation restored FADS1/2 expression and counteracted ferroptosis, thereby forming a protective feedback loop. This study elucidates a novel regulatory axis involving the two major metabolic changes-downregulation of PUFA synthesis and upregulation of histone lactylation-in ALI pathogenesis, which are interconnected through the PARK7-BMP signaling pathway. Targeting this axis offers potential therapeutic strategies for mitigating endothelial dysfunction and ferroptosis in ARDS/ALI.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.