Efficient Crystallization of Conjugated Microporous Polymers to Boost Photocatalytic CO2 Reduction

IF 24.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-07-07 DOI:10.1002/cey2.70025
Keming Li, Yuanle Su, Shuhan Sun, Nikolay Sirotkin, Alexander Agafonov, Kangle Lv, Jinbo Xue, Shixiong Liang, Yanting Tian, Zhanfeng Li, Yue Tian, Xianqiang Xiong
{"title":"Efficient Crystallization of Conjugated Microporous Polymers to Boost Photocatalytic CO2 Reduction","authors":"Keming Li,&nbsp;Yuanle Su,&nbsp;Shuhan Sun,&nbsp;Nikolay Sirotkin,&nbsp;Alexander Agafonov,&nbsp;Kangle Lv,&nbsp;Jinbo Xue,&nbsp;Shixiong Liang,&nbsp;Yanting Tian,&nbsp;Zhanfeng Li,&nbsp;Yue Tian,&nbsp;Xianqiang Xiong","doi":"10.1002/cey2.70025","DOIUrl":null,"url":null,"abstract":"<p>The use of conjugated microporous polymers (CMPs) in photocatalytic CO<sub>2</sub> reduction (CO<sub>2</sub>RR), leveraging solar energy and water to generate carbon-based products, is attracting considerable attention. However, the amorphous nature of most CMPs poses challenges for effective charge carrier separation, limiting their application in CO<sub>2</sub>RR. In this study, we introduce an innovative approach utilizing donor π-skeleton engineering to enhance skeleton coplanarity, thereby achieving highly crystalline CMPs. Advanced femtosecond transient absorption and temperature-dependent photoluminescence analyses reveal efficient exciton dissociation into free charge carriers that actively engage in surface reactions. Complementary theoretical calculations demonstrate that our highly crystalline CMP (Py-TDO) not only greatly improves the separation and transfer of photoexcited charge carriers but also introduces additional charge transport pathways via intermolecular π–π stacking. Py-TDO exhibits outstanding photocatalytic CO<sub>2</sub> reduction capabilities, achieving a remarkable CO generation rate of 223.97 μmol g<sup>−1</sup> h<sup>−1</sup> without the addition of chemical scavengers. This work lays pioneering groundwork for the development of novel highly crystalline materials, advancing the field of solar-driven energy conversion.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 9","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of conjugated microporous polymers (CMPs) in photocatalytic CO2 reduction (CO2RR), leveraging solar energy and water to generate carbon-based products, is attracting considerable attention. However, the amorphous nature of most CMPs poses challenges for effective charge carrier separation, limiting their application in CO2RR. In this study, we introduce an innovative approach utilizing donor π-skeleton engineering to enhance skeleton coplanarity, thereby achieving highly crystalline CMPs. Advanced femtosecond transient absorption and temperature-dependent photoluminescence analyses reveal efficient exciton dissociation into free charge carriers that actively engage in surface reactions. Complementary theoretical calculations demonstrate that our highly crystalline CMP (Py-TDO) not only greatly improves the separation and transfer of photoexcited charge carriers but also introduces additional charge transport pathways via intermolecular π–π stacking. Py-TDO exhibits outstanding photocatalytic CO2 reduction capabilities, achieving a remarkable CO generation rate of 223.97 μmol g−1 h−1 without the addition of chemical scavengers. This work lays pioneering groundwork for the development of novel highly crystalline materials, advancing the field of solar-driven energy conversion.

Abstract Image

共轭微孔聚合物的高效结晶促进光催化CO2还原
共轭微孔聚合物(CMPs)在光催化CO2还原(CO2RR)中的应用,利用太阳能和水来产生碳基产品,引起了人们的广泛关注。然而,大多数cmp的无定形性质对有效的载流子分离提出了挑战,限制了它们在CO2RR中的应用。在本研究中,我们引入了一种创新的方法,利用供体π-骨架工程来增强骨架共面性,从而获得高结晶的cmp。先进的飞秒瞬态吸收和温度依赖性光致发光分析揭示了有效的激子解离成积极参与表面反应的自由载流子。互补理论计算表明,我们的高结晶CMP (Py-TDO)不仅极大地改善了光激发载流子的分离和转移,而且通过分子间π -π堆叠引入了额外的电荷传输途径。Py-TDO具有出色的光催化CO2还原能力,在不添加化学清除剂的情况下,CO生成速率达到223.97 μmol g−1 h−1。这项工作为新型高结晶材料的开发奠定了开创性的基础,推动了太阳能驱动能源转换领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信