Multifunctional Interface Engineering of Li13Si4 Pre-Lithiation Additives With Superior Environmental Stability for High-Energy-Density Lithium-Ion Batteries
{"title":"Multifunctional Interface Engineering of Li13Si4 Pre-Lithiation Additives With Superior Environmental Stability for High-Energy-Density Lithium-Ion Batteries","authors":"Yinan Liu, Yun Zheng, Kunye Yan, Jun Wang, Yunxian Qian, Junpo Guo, Qi Zhang, Congcong Zhang, Pingshan Jia, Zhiyuan Zhang, Shengyang Dong, Jiangmin Jiang, Yan Guo, Rong Chen, Yike Huang, Yingying Shen, Jincheng Xu, Ruifeng Zheng, Yuxin Tang, Wei Jiang, Huaiyu Shao","doi":"10.1002/cey2.70034","DOIUrl":null,"url":null,"abstract":"<p>Considering the growing pre-lithiation demand for high-performance Si-based anodes and consequent additional costs caused by the strict pre-lithiation environment, developing effective and environmentally stable pre-lithiation additives is a challenging research hotspot. Herein, interfacial engineered multifunctional Li<sub>13</sub>Si<sub>4</sub>@perfluoropolyether (PFPE)/LiF micro/nanoparticles are proposed as anode pre-lithiation additives, successfully constructed with the hybrid interface on the surface of Li<sub>13</sub>Si<sub>4</sub> through PFPE-induced nucleophilic substitution. The synthesized multifunctional Li<sub>13</sub>Si<sub>4</sub>@PFPE/LiF realizes the integration of active Li compensation, long-term chemical structural stability in air, and solid electrolyte interface (SEI) optimization. In particular, the Li<sub>13</sub>Si<sub>4</sub>@PFPE/LiF with a high pre-lithiation capacity (1102.4 mAh g<sup>−1</sup>) is employed in the pre-lithiation Si-based anode, which exhibits a superior initial Coulombic efficiency of 102.6%. Additionally, in situ X-ray diffraction/Raman, density functional theory calculation, and finite element analysis jointly illustrate that PFPE-predominant hybrid interface with modulated abundant highly electronegative F atoms distribution reduces the water adsorption energy and oxidation kinetics of Li<sub>13</sub>Si<sub>4</sub>@PFPE/LiF, which delivers a high pre-lithiation capacity retention of 84.39% after exposure to extremely moist air (60% relative humidity). Intriguingly, a LiF-rich mechanically stable bilayer SEI is constructed on anodes through a pre-lithiation-driven regulation for the behavior of electrolyte decomposition. Benefitting from pre-lithiation via multifunctional Li<sub>13</sub>Si<sub>4</sub>@PFPE/LiF, the full cell and pouch cell assembled with pre-lithiated anodes operate with long-time stability of 86.5% capacity retention over 200 cycles and superior energy density of 549.9 Wh kg<sup>–1</sup>, respectively. The universal multifunctional pre-lithiation additives provide enlightenment on promoting large-scale applications of pre-lithiation on commercial high-energy-density and long-cycle-life lithium-ion batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 9","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the growing pre-lithiation demand for high-performance Si-based anodes and consequent additional costs caused by the strict pre-lithiation environment, developing effective and environmentally stable pre-lithiation additives is a challenging research hotspot. Herein, interfacial engineered multifunctional Li13Si4@perfluoropolyether (PFPE)/LiF micro/nanoparticles are proposed as anode pre-lithiation additives, successfully constructed with the hybrid interface on the surface of Li13Si4 through PFPE-induced nucleophilic substitution. The synthesized multifunctional Li13Si4@PFPE/LiF realizes the integration of active Li compensation, long-term chemical structural stability in air, and solid electrolyte interface (SEI) optimization. In particular, the Li13Si4@PFPE/LiF with a high pre-lithiation capacity (1102.4 mAh g−1) is employed in the pre-lithiation Si-based anode, which exhibits a superior initial Coulombic efficiency of 102.6%. Additionally, in situ X-ray diffraction/Raman, density functional theory calculation, and finite element analysis jointly illustrate that PFPE-predominant hybrid interface with modulated abundant highly electronegative F atoms distribution reduces the water adsorption energy and oxidation kinetics of Li13Si4@PFPE/LiF, which delivers a high pre-lithiation capacity retention of 84.39% after exposure to extremely moist air (60% relative humidity). Intriguingly, a LiF-rich mechanically stable bilayer SEI is constructed on anodes through a pre-lithiation-driven regulation for the behavior of electrolyte decomposition. Benefitting from pre-lithiation via multifunctional Li13Si4@PFPE/LiF, the full cell and pouch cell assembled with pre-lithiated anodes operate with long-time stability of 86.5% capacity retention over 200 cycles and superior energy density of 549.9 Wh kg–1, respectively. The universal multifunctional pre-lithiation additives provide enlightenment on promoting large-scale applications of pre-lithiation on commercial high-energy-density and long-cycle-life lithium-ion batteries.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.