Sequentially Evaporated Wide Bandgap Perovskite Absorber for Large-Area and Reproducible Fabrication of Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-09-02 DOI:10.1002/solr.202500412
Arman Mahboubi Soufiani,  Hajar Moumine,  Erik Wutke,  Guillermo A. Farias Basulto,  Wander Max Bernardes de Araujo, Matthew Leyden, Mateusz Szot, Tobias Bertram, Viktor Škorjanc, Angelika Harter, Stefanie Severin, Marcel Roß, Roland Mainz, Rutger Schlatmann, Steve Albrecht, Bernd Stannowski, Jona Kurpiers
{"title":"Sequentially Evaporated Wide Bandgap Perovskite Absorber for Large-Area and Reproducible Fabrication of Solar Cells","authors":"Arman Mahboubi Soufiani,&nbsp;\nHajar Moumine,&nbsp;\nErik Wutke,&nbsp;\nGuillermo A. Farias Basulto,&nbsp;\nWander Max Bernardes de Araujo,&nbsp;Matthew Leyden,&nbsp;Mateusz Szot,&nbsp;Tobias Bertram,&nbsp;Viktor Škorjanc,&nbsp;Angelika Harter,&nbsp;Stefanie Severin,&nbsp;Marcel Roß,&nbsp;Roland Mainz,&nbsp;Rutger Schlatmann,&nbsp;Steve Albrecht,&nbsp;Bernd Stannowski,&nbsp;Jona Kurpiers","doi":"10.1002/solr.202500412","DOIUrl":null,"url":null,"abstract":"<p>Herein, we perform sequential deposition of the organic and inorganic sub-components evaporated from <i>point sources</i>, followed by thermal conversion to yield wide bandgap perovskite films for the application in perovskite/silicon tandem cells. In our approach, uniform formamidinium iodide (FAI) layers with varying thicknesses are first deposited with rotating substrate. We next co-evaporate the inorganic precursors PbI<sub>2</sub>, PbBr<sub>2</sub>, and CsI onto the FAI layer in a static mode, without substrate rotation, leading to thickness gradients across the substrate, known from single-layer characterization. To promote conversion to α-phase perovskite, another uniform FAI layer is deposited on top, sandwiching the inorganic precursor layer stack. After thermal conversion, we obtain controlled compositional variations of the perovskite layer. Using spatially resolved characterization techniques, the most suitable composition, hence, evaporation rates for the individual inorganic precursors and the best thickness of the FAI sublayer are identified in a time-efficient manner. As a result, an optimized average implied open-circuit voltage, i<i>V</i><sub>OC</sub>, of about 1230 mV and optical bandgap of 1.70 eV, very uniformly distributed over a half M6 wafer area, were achieved for the absorbers when deposited on a self-assembled monolayer. Without any perovskite surface passivation or additional treatment, single-junction devices with an average fill factor of 70% (65%) in reverse (forward) light current–voltage scan and <i>V</i><sub>OC</sub> of 1075 mV were achieved across several batches. Integrating this absorber in tandem cells with a random-pyramid textured bottom-cell led to preliminary cells with efficiencies up to 24%.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500412","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500412","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we perform sequential deposition of the organic and inorganic sub-components evaporated from point sources, followed by thermal conversion to yield wide bandgap perovskite films for the application in perovskite/silicon tandem cells. In our approach, uniform formamidinium iodide (FAI) layers with varying thicknesses are first deposited with rotating substrate. We next co-evaporate the inorganic precursors PbI2, PbBr2, and CsI onto the FAI layer in a static mode, without substrate rotation, leading to thickness gradients across the substrate, known from single-layer characterization. To promote conversion to α-phase perovskite, another uniform FAI layer is deposited on top, sandwiching the inorganic precursor layer stack. After thermal conversion, we obtain controlled compositional variations of the perovskite layer. Using spatially resolved characterization techniques, the most suitable composition, hence, evaporation rates for the individual inorganic precursors and the best thickness of the FAI sublayer are identified in a time-efficient manner. As a result, an optimized average implied open-circuit voltage, iVOC, of about 1230 mV and optical bandgap of 1.70 eV, very uniformly distributed over a half M6 wafer area, were achieved for the absorbers when deposited on a self-assembled monolayer. Without any perovskite surface passivation or additional treatment, single-junction devices with an average fill factor of 70% (65%) in reverse (forward) light current–voltage scan and VOC of 1075 mV were achieved across several batches. Integrating this absorber in tandem cells with a random-pyramid textured bottom-cell led to preliminary cells with efficiencies up to 24%.

Abstract Image

连续蒸发宽禁带钙钛矿吸收体用于大面积可重复制造太阳能电池
本文中,我们对从点源蒸发的有机和无机亚组分进行顺序沉积,然后进行热转化以产生用于钙钛矿/硅串联电池的宽带隙钙钛矿薄膜。在我们的方法中,首先将具有不同厚度的均匀碘化甲脒(FAI)层沉积在旋转基板上。接下来,我们将无机前驱体PbI2、PbBr2和CsI在静止模式下共同蒸发到FAI层上,没有衬底旋转,导致衬底上的厚度梯度,这是单层表征所知道的。为了促进α-相钙钛矿的转化,另一层均匀的FAI层沉积在顶部,夹在无机前驱体层堆栈之间。热转化后,钙钛矿层的成分变化得到了控制。利用空间分辨表征技术,以时间效率的方式确定了最合适的组成,因此,单个无机前驱体的蒸发速率和FAI亚层的最佳厚度。结果表明,在半M6晶圆面积上均匀分布的平均隐含开路电压iVOC约为1230 mV,光带隙为1.70 eV。在没有任何钙钛矿表面钝化或额外处理的情况下,在反向(正向)光电流-电压扫描中,单结器件的平均填充系数为70% (65%),VOC为1075 mV。将这种吸收剂与随机金字塔结构的底部电池集成在串联电池中,使初步电池的效率高达24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信