Gaussian soliton and periodic wave solutions with their stabilities in the cubic-quintic Gross–Pitaevskii equation integrating spin-orbit momentum effects

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Yadaroum Pascal, Boubakary Abdou, Malwe Boudoue Hubert, Saïdou Abdoulkary
{"title":"Gaussian soliton and periodic wave solutions with their stabilities in the cubic-quintic Gross–Pitaevskii equation integrating spin-orbit momentum effects","authors":"Yadaroum Pascal,&nbsp;Boubakary Abdou,&nbsp;Malwe Boudoue Hubert,&nbsp;Saïdou Abdoulkary","doi":"10.1140/epjb/s10051-025-01058-2","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the presence and stability of nonlinear localized modes within the Gross–Pitaevskii Equation (GPE), considering interactions involving cubic–quintic nonlinearities and varying spin-orbit momentum (SOM). It also explores two distinct types of complex parity-time (<span>\\(\\mathcal{P}\\mathcal{T}\\)</span>)-symmetric potentials, specifically Gaussian harmonic and periodic potentials. The influence of the SOM coefficient on regions of unbroken and broken phases is examined, revealing its modulation effect on the nonlinear stability and power distribution of these modes. Additionally, the interaction dynamics of two spatial solitons are analyzed within the context of the <span>\\(\\mathcal{P}\\mathcal{T}\\)</span>-symmetric Gaussian potential. Notably, it is found that solitons remain stable even when the <span>\\(\\mathcal{P}\\mathcal{T}\\)</span>-symmetry of the underlying nonlinear model is disrupted. The accuracy of the findings is confirmed through comparisons with numerical simulations and exact analytical expressions of the localized modes in one dimension (1D). The numerical simulations also indicate that obtaining the stable solitons of the cubic–quintic GPE with a varying SOM term is most challenging when the considered <span>\\(\\mathcal{P}\\mathcal{T}\\)</span>-symmetric potential is periodic.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01058-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the presence and stability of nonlinear localized modes within the Gross–Pitaevskii Equation (GPE), considering interactions involving cubic–quintic nonlinearities and varying spin-orbit momentum (SOM). It also explores two distinct types of complex parity-time (\(\mathcal{P}\mathcal{T}\))-symmetric potentials, specifically Gaussian harmonic and periodic potentials. The influence of the SOM coefficient on regions of unbroken and broken phases is examined, revealing its modulation effect on the nonlinear stability and power distribution of these modes. Additionally, the interaction dynamics of two spatial solitons are analyzed within the context of the \(\mathcal{P}\mathcal{T}\)-symmetric Gaussian potential. Notably, it is found that solitons remain stable even when the \(\mathcal{P}\mathcal{T}\)-symmetry of the underlying nonlinear model is disrupted. The accuracy of the findings is confirmed through comparisons with numerical simulations and exact analytical expressions of the localized modes in one dimension (1D). The numerical simulations also indicate that obtaining the stable solitons of the cubic–quintic GPE with a varying SOM term is most challenging when the considered \(\mathcal{P}\mathcal{T}\)-symmetric potential is periodic.

Abstract Image

积分自旋轨道动量效应的三五次Gross-Pitaevskii方程中的高斯孤子和周期波解及其稳定性
考虑三次五次非线性和变自旋轨道动量(SOM)的相互作用,研究了Gross-Pitaevskii方程(GPE)中非线性局域模式的存在性和稳定性。它还探讨了两种不同类型的复宇称时间(\(\mathcal{P}\mathcal{T}\))对称势,特别是高斯谐波势和周期势。研究了SOM系数对未破相和破相区域的影响,揭示了其对这些模式的非线性稳定性和功率分布的调制作用。此外,在\(\mathcal{P}\mathcal{T}\) -对称高斯势的背景下,分析了两个空间孤子的相互作用动力学。值得注意的是,即使底层非线性模型的\(\mathcal{P}\mathcal{T}\) -对称性被破坏,孤子仍然保持稳定。通过与数值模拟和一维(1D)局部模态精确解析表达式的比较,证实了研究结果的准确性。数值模拟还表明,当所考虑的\(\mathcal{P}\mathcal{T}\) -对称势是周期势时,获得具有变化SOM项的三五次GPE的稳定孤子是最具挑战性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信