Functionalized AuNP-mycelial composites as engineered living materials for sustainable mercury remediation

IF 4.9
Juwon S. Afolayan and Carole C. Perry
{"title":"Functionalized AuNP-mycelial composites as engineered living materials for sustainable mercury remediation","authors":"Juwon S. Afolayan and Carole C. Perry","doi":"10.1039/D5SU00556F","DOIUrl":null,"url":null,"abstract":"<p >Heavy metal contamination, particularly mercury (Hg<small><sup>2+</sup></small>), poses severe environmental and health risks even at trace levels. Current methods face challenges such as high costs, secondary pollution, and structural complexity, which limit global adaptability. This study presents a naturally templated engineered living material (ELM) using <em>Aspergillus niger</em> mycelia functionalized with gold nanoparticles (AuNPs) for effective mercury bioremediation. A rapid colorimetric detection system using surface-modified AuNPs, either with conventional reductant (borate), nutrient (glucose), antibiotic (cefaclor), or ionic compound (citrate), achieved a response within 5 seconds with a detection limit down to 5 μM. Biofilters generated from AuNP-bound mycelia demonstrated efficient mercury removal, reducing Hg<small><sup>2+</sup></small> from 5 ppb to 0.5 ppb, outperforming conventional polyethylene filters (Pierce™ 30 μM), and meeting World Health Organization (WHO) safety standards. The material maintained consistent performance over five reuse cycles (without any structural deformation, allowing for additional use cycles), with progressive mercury desorption for potential recovery. Growth conditions (nitrogen sources, AuNP concentration, surface functionalization, and duration of growth) could be used to influence AuNP assembly, fungal physiology, and activity of the composite materials. This scalable and cost-effective approach integrates nanotechnology with fungal bioremediation, providing a sustainable, adaptable solution for heavy metal pollution control.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 4703-4713"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00556f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00556f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal contamination, particularly mercury (Hg2+), poses severe environmental and health risks even at trace levels. Current methods face challenges such as high costs, secondary pollution, and structural complexity, which limit global adaptability. This study presents a naturally templated engineered living material (ELM) using Aspergillus niger mycelia functionalized with gold nanoparticles (AuNPs) for effective mercury bioremediation. A rapid colorimetric detection system using surface-modified AuNPs, either with conventional reductant (borate), nutrient (glucose), antibiotic (cefaclor), or ionic compound (citrate), achieved a response within 5 seconds with a detection limit down to 5 μM. Biofilters generated from AuNP-bound mycelia demonstrated efficient mercury removal, reducing Hg2+ from 5 ppb to 0.5 ppb, outperforming conventional polyethylene filters (Pierce™ 30 μM), and meeting World Health Organization (WHO) safety standards. The material maintained consistent performance over five reuse cycles (without any structural deformation, allowing for additional use cycles), with progressive mercury desorption for potential recovery. Growth conditions (nitrogen sources, AuNP concentration, surface functionalization, and duration of growth) could be used to influence AuNP assembly, fungal physiology, and activity of the composite materials. This scalable and cost-effective approach integrates nanotechnology with fungal bioremediation, providing a sustainable, adaptable solution for heavy metal pollution control.

Abstract Image

功能化aunp -菌丝复合材料作为可持续汞修复的工程生物材料
重金属污染,特别是汞(Hg2+),即使在微量水平也会造成严重的环境和健康风险。目前的方法面临着诸如高成本、二次污染和结构复杂性等挑战,这些挑战限制了全球适应性。本研究提出了一种利用金纳米粒子功能化黑曲霉菌丝体的天然模板化工程活性材料(ELM),用于有效的汞生物修复。使用表面修饰AuNPs的快速比色检测系统,无论是使用常规还原剂(硼酸盐)、营养物(葡萄糖)、抗生素(头孢克洛)还是离子化合物(柠檬酸盐),都可以在5秒内实现响应,检测限低至5 μM。由aunp结合菌丝体生成的生物过滤器显示出高效的汞去除效果,将Hg2+从5 ppb降至0.5 ppb,优于传统的聚乙烯过滤器(Pierce™30 μM),并符合世界卫生组织(WHO)的安全标准。该材料在五个重复使用周期中保持了一致的性能(没有任何结构变形,允许额外的使用周期),并逐步进行汞解吸,以实现潜在的回收。生长条件(氮源、AuNP浓度、表面功能化和生长持续时间)可以影响复合材料的AuNP组装、真菌生理和活性。这种可扩展且具有成本效益的方法将纳米技术与真菌生物修复相结合,为重金属污染控制提供了一种可持续的、适应性强的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信