Photocatalytic and antimicrobial polymer-based hybrid membranes with surface-modified TiO2 nanoparticles with 5-aminosalicylic acid and silver nanoparticles

IF 4.9
Joana M. Queirós, Fangyuan Zheng, Ricardo Brito-Pereira, Margarida M. Fernandes, Estela O. Carvalho, Pedro M. Martins, Vesna Lazić, Jovan M. Nedeljković and Senentxu Lanceros-Mendez
{"title":"Photocatalytic and antimicrobial polymer-based hybrid membranes with surface-modified TiO2 nanoparticles with 5-aminosalicylic acid and silver nanoparticles","authors":"Joana M. Queirós, Fangyuan Zheng, Ricardo Brito-Pereira, Margarida M. Fernandes, Estela O. Carvalho, Pedro M. Martins, Vesna Lazić, Jovan M. Nedeljković and Senentxu Lanceros-Mendez","doi":"10.1039/D5SU00569H","DOIUrl":null,"url":null,"abstract":"<p >The sustainability of water treatment is a growing environmental and public health concern, particularly regarding the removal of antibiotics and microorganisms. This study developed multifunctional membranes using synthetic (PVDF-HFP) and natural (silk fibroin, SF) polymer matrices incorporating TiO<small><sub>2</sub></small> nanoparticles surface-modified with 5-aminosalicylic acid (5-ASA) and silver (Ag). These modifications enhanced both visible-light-responsive photocatalytic activity and antimicrobial performance. The membranes were evaluated for ciprofloxacin degradation and antimicrobial activity against Gram-positive and Gram-negative bacteria. Photocatalytic PVDF-HFP membranes achieved 63% and 62% under UV and simulated solar radiation, respectively, while SF membranes reached 50% and 71%. Antimicrobial efficiency showed a ∼2 log<small><sub>10</sub></small> bacterial reduction for <em>E. coli</em> and a 0.5 log<small><sub>10</sub></small> reduction for <em>S. epidermidis</em>, attributed to the presence of Ag in the TiO<small><sub>2</sub></small>/5-ASA nanoparticles. Furthermore, the membranes maintained stable performance across multiple reuse cycles. Overall, the results highlight the potential of these multifunctional materials as efficient and eco-friendly solutions for advanced wastewater treatment applications.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 4568-4582"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00569h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00569h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sustainability of water treatment is a growing environmental and public health concern, particularly regarding the removal of antibiotics and microorganisms. This study developed multifunctional membranes using synthetic (PVDF-HFP) and natural (silk fibroin, SF) polymer matrices incorporating TiO2 nanoparticles surface-modified with 5-aminosalicylic acid (5-ASA) and silver (Ag). These modifications enhanced both visible-light-responsive photocatalytic activity and antimicrobial performance. The membranes were evaluated for ciprofloxacin degradation and antimicrobial activity against Gram-positive and Gram-negative bacteria. Photocatalytic PVDF-HFP membranes achieved 63% and 62% under UV and simulated solar radiation, respectively, while SF membranes reached 50% and 71%. Antimicrobial efficiency showed a ∼2 log10 bacterial reduction for E. coli and a 0.5 log10 reduction for S. epidermidis, attributed to the presence of Ag in the TiO2/5-ASA nanoparticles. Furthermore, the membranes maintained stable performance across multiple reuse cycles. Overall, the results highlight the potential of these multifunctional materials as efficient and eco-friendly solutions for advanced wastewater treatment applications.

Abstract Image

5-氨基水杨酸和纳米银修饰TiO2纳米粒子的光催化和抗菌聚合物基杂化膜
水处理的可持续性日益成为环境和公共卫生关注的问题,特别是在去除抗生素和微生物方面。本研究以合成(PVDF-HFP)和天然(丝素蛋白,SF)聚合物为基质,结合表面被5-氨基水杨酸(5-ASA)和银(Ag)修饰的TiO2纳米颗粒,开发了多功能膜。这些修饰提高了可见光响应性光催化活性和抗菌性能。评价了膜对环丙沙星的降解和对革兰氏阳性和革兰氏阴性细菌的抗菌活性。光催化PVDF-HFP膜在UV和模拟太阳辐射下分别达到63%和62%,而SF膜达到50%和71%。由于TiO2/5-ASA纳米颗粒中存在Ag,抗菌效率对大肠杆菌降低了2 log10,对表皮葡萄球菌降低了0.5 log10。此外,膜在多次重复使用循环中保持稳定的性能。总的来说,研究结果突出了这些多功能材料在高级废水处理应用中作为高效和环保解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信