In Situ PVDF-Derived LiF-Rich Interphase Enables Air-Stable, High-Voltage Layered Ni-Rich Oxide Cathodes

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Leiying Zeng, , , Qiulong Tang, , , Ying Yang, , , Xueyi Guo, , , Long Jiang, , , Hui Tong, , , Jilu Zhao*, , , Hui Shao, , , Yanbin Shen, , and , Gaoqiang Mao*, 
{"title":"In Situ PVDF-Derived LiF-Rich Interphase Enables Air-Stable, High-Voltage Layered Ni-Rich Oxide Cathodes","authors":"Leiying Zeng,&nbsp;, ,&nbsp;Qiulong Tang,&nbsp;, ,&nbsp;Ying Yang,&nbsp;, ,&nbsp;Xueyi Guo,&nbsp;, ,&nbsp;Long Jiang,&nbsp;, ,&nbsp;Hui Tong,&nbsp;, ,&nbsp;Jilu Zhao*,&nbsp;, ,&nbsp;Hui Shao,&nbsp;, ,&nbsp;Yanbin Shen,&nbsp;, and ,&nbsp;Gaoqiang Mao*,&nbsp;","doi":"10.1021/acs.energyfuels.5c04268","DOIUrl":null,"url":null,"abstract":"<p >High-nickel layered cathode materials (LiNi<sub><i>x</i></sub>Mn<sub><i>y</i></sub>Co<sub><i>z</i></sub>O<sub>2</sub>, <i>x</i> + <i>y</i> + <i>z</i> = 1, <i>x</i> ≥ 0.8) have garnered significant attention for next-generation lithium-ion batteries due to their outstanding energy density. However, increasing the nickel content leads to deteriorated air stability and poor cycling performance at high cutoff voltages, primarily due to interfacial chemical instability and electrochemical degradation. Herein, we report a facile and effective surface modification strategy for LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> (NCM811), leveraging surface residual alkaline lithium compounds as a lithium source to enable <i>in situ</i> transformation and the concurrent formation of a LiF-rich protective layer. The modified material, referred to as PT-NCM811, exhibits markedly reduced surface impurities after 7 days of air exposure, demonstrating excellent air stability. Furthermore, in a baseline ester-based electrolyte without any additives, PT-NCM811 delivers a capacity retention of 79.2% after 200 cycles at 0.5 C under a high cutoff voltage of 4.4 V vs Li<sup>+</sup>/Li, substantially outperforming the pristine NCM811 counterpart. This work offers a promising avenue for interfacial engineering of high-nickel cathodes and paves the way toward their practical deployment in high-energy-density lithium-ion batteries.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 39","pages":"19033–19041"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c04268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-nickel layered cathode materials (LiNixMnyCozO2, x + y + z = 1, x ≥ 0.8) have garnered significant attention for next-generation lithium-ion batteries due to their outstanding energy density. However, increasing the nickel content leads to deteriorated air stability and poor cycling performance at high cutoff voltages, primarily due to interfacial chemical instability and electrochemical degradation. Herein, we report a facile and effective surface modification strategy for LiNi0.83Co0.12Mn0.05O2 (NCM811), leveraging surface residual alkaline lithium compounds as a lithium source to enable in situ transformation and the concurrent formation of a LiF-rich protective layer. The modified material, referred to as PT-NCM811, exhibits markedly reduced surface impurities after 7 days of air exposure, demonstrating excellent air stability. Furthermore, in a baseline ester-based electrolyte without any additives, PT-NCM811 delivers a capacity retention of 79.2% after 200 cycles at 0.5 C under a high cutoff voltage of 4.4 V vs Li+/Li, substantially outperforming the pristine NCM811 counterpart. This work offers a promising avenue for interfacial engineering of high-nickel cathodes and paves the way toward their practical deployment in high-energy-density lithium-ion batteries.

Abstract Image

原位pvdf衍生的富liff界面使空气稳定,高压层状富镍氧化物阴极
高镍层状正极材料(LiNixMnyCozO2, x + y + z = 1, x≥0.8)由于其出色的能量密度而引起了下一代锂离子电池的广泛关注。然而,增加镍含量会导致空气稳定性恶化,在高截止电压下循环性能变差,主要是由于界面化学不稳定性和电化学降解。本文报道了一种简单有效的LiNi0.83Co0.12Mn0.05O2 (NCM811)表面改性策略,利用表面残留的碱性锂化合物作为锂源,实现原位转化并同时形成富liff保护层。这种被称为PT-NCM811的改性材料在空气暴露7天后,表面杂质明显减少,表现出优异的空气稳定性。此外,在没有任何添加剂的基础酯基电解质中,PT-NCM811在0.5 C下,在4.4 V vs Li+/Li的高截止电压下,在200次循环后的容量保持率为79.2%,大大优于原始的NCM811。这项工作为高镍阴极的界面工程提供了一条有前途的途径,并为其在高能量密度锂离子电池中的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信