Structural Modeling of NTPDase-Substrate Complexes Preserving Catalytic Experimental Features

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-22 DOI:10.1021/acsomega.5c04628
João Victor B. de Moraes, , , Marcelo D. Polêto, , , Raissa B. de Castro, , , Gustavo C. Bressan, , , Raphael de S Vasconcellos, , , Jean Sévigny*, , and , Juliana R. Fietto*, 
{"title":"Structural Modeling of NTPDase-Substrate Complexes Preserving Catalytic Experimental Features","authors":"João Victor B. de Moraes,&nbsp;, ,&nbsp;Marcelo D. Polêto,&nbsp;, ,&nbsp;Raissa B. de Castro,&nbsp;, ,&nbsp;Gustavo C. Bressan,&nbsp;, ,&nbsp;Raphael de S Vasconcellos,&nbsp;, ,&nbsp;Jean Sévigny*,&nbsp;, and ,&nbsp;Juliana R. Fietto*,&nbsp;","doi":"10.1021/acsomega.5c04628","DOIUrl":null,"url":null,"abstract":"<p >Members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family play a pivotal role in hydrolyzing nucleoside triphosphates and diphosphates, modulating purinergic and pyrimidinergic signaling pathways. The NTPDases have therapeutic potential; gaining structural insights into NTPDase-substrate complexes would be valuable for optimizing these enzymes for therapeutic applications. However, such insights remain limited, posing challenges for effective optimization. Molecular docking often fails to capture experimentally characterized substrate conformations, leading to biologically irrelevant models. To address this, we developed a computational strategy that preserves experimentally observed substrate features while leveraging the active site’s conservation across NTPDases. Our method identifies a canonical linear-like substrate conformation encompassing the phosphate tail and nucleobase ring conserved across experimental NTPDase structures. This approach enabled the modeling of <i>Homo sapiens</i> (Hs) NTPDases (HsNTPDase1–8) complexed with ATP, ADP, GTP, GDP, UTP, and UDP, accurately positioning metal ion cofactor and catalytic water molecules. The resulting models offer a reliable framework for studying enzyme–substrate interactions, paving the way for rational enzyme engineering and therapeutic exploration.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 38","pages":"43891–43902"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c04628","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c04628","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family play a pivotal role in hydrolyzing nucleoside triphosphates and diphosphates, modulating purinergic and pyrimidinergic signaling pathways. The NTPDases have therapeutic potential; gaining structural insights into NTPDase-substrate complexes would be valuable for optimizing these enzymes for therapeutic applications. However, such insights remain limited, posing challenges for effective optimization. Molecular docking often fails to capture experimentally characterized substrate conformations, leading to biologically irrelevant models. To address this, we developed a computational strategy that preserves experimentally observed substrate features while leveraging the active site’s conservation across NTPDases. Our method identifies a canonical linear-like substrate conformation encompassing the phosphate tail and nucleobase ring conserved across experimental NTPDase structures. This approach enabled the modeling of Homo sapiens (Hs) NTPDases (HsNTPDase1–8) complexed with ATP, ADP, GTP, GDP, UTP, and UDP, accurately positioning metal ion cofactor and catalytic water molecules. The resulting models offer a reliable framework for studying enzyme–substrate interactions, paving the way for rational enzyme engineering and therapeutic exploration.

保留催化实验特征的ntpase -底物配合物的结构建模
外核苷三磷酸二磷酸水解酶(e - ntpase)家族成员在三磷酸核苷和二磷酸核苷水解、嘌呤能和嘧啶能信号通路调节中起关键作用。ntpases具有治疗潜力;获得ntpase -底物复合物的结构见解将对优化这些酶的治疗应用有价值。然而,这些见解仍然有限,为有效优化提出了挑战。分子对接通常不能捕获实验表征的底物构象,导致生物学上不相关的模型。为了解决这个问题,我们开发了一种计算策略,该策略保留了实验观察到的底物特征,同时利用了活性位点在ntpases中的保护。我们的方法确定了一个典型的线性底物构象,包括磷酸尾和核碱基环在实验ntpase结构中保守。该方法实现了智人(Hs) ntpdase (HsNTPDase1-8)与ATP、ADP、GTP、GDP、UTP和UDP络合的建模,准确定位金属离子辅因子和催化水分子。所得到的模型为研究酶-底物相互作用提供了可靠的框架,为合理的酶工程和治疗探索铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信