Reactive MnO2 Nanowire Template-Assisted Synthesis of Tubular Mn-Based Polypyrrole Composites for High-Performance Oxidase-like Catalysis

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jianxue Zhao, , , Jingli Xu, , , Xue-Bo Yin, , and , Min Zhang*, 
{"title":"Reactive MnO2 Nanowire Template-Assisted Synthesis of Tubular Mn-Based Polypyrrole Composites for High-Performance Oxidase-like Catalysis","authors":"Jianxue Zhao,&nbsp;, ,&nbsp;Jingli Xu,&nbsp;, ,&nbsp;Xue-Bo Yin,&nbsp;, and ,&nbsp;Min Zhang*,&nbsp;","doi":"10.1021/acs.cgd.5c00984","DOIUrl":null,"url":null,"abstract":"<p >The development of bioinspired nanozymes with tailored activities and structural versatility remains a critical challenge in advanced enzyme-mimetic systems. Herein, we demonstrate a facile one-step hydrothermal approach for constructing one-dimensional (1D) tubular Mn-based polypyrrole (PPy) hybrid architectures using MnO<sub>2</sub> nanowires (NWs) as dual-function templates and oxidative polymerization agents. This strategy enables precise control over compositional gradients and morphological evolution, where hydrothermal temperature emerges as a critical parameter governing the compositional and structural transformation from MnO<sub>2</sub> NWs to MnOOH, Mn<sub>3</sub>O<sub>4</sub>, and MnCO<sub>3</sub> nanorods embedded within conductive PPy nanotubes. Consequently, the optimized Mn<sub>3</sub>O<sub>4</sub>-based composites exhibit remarkably enhanced oxidase-mimicking activity, achieving great improvement in catalytic efficiency. Owing to this superior oxidase-like performance, a highly sensitive cysteine sensing platform was constructed. This work establishes a modular platform for designing hybrid nanozymes by integrating structural directionality (1D tubular architecture) with compositional tunability (metal oxide–polymer interfaces), offering promising opportunities in biosensing, environmental remediation, and energy-related catalytic applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 19","pages":"8172–8180"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00984","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of bioinspired nanozymes with tailored activities and structural versatility remains a critical challenge in advanced enzyme-mimetic systems. Herein, we demonstrate a facile one-step hydrothermal approach for constructing one-dimensional (1D) tubular Mn-based polypyrrole (PPy) hybrid architectures using MnO2 nanowires (NWs) as dual-function templates and oxidative polymerization agents. This strategy enables precise control over compositional gradients and morphological evolution, where hydrothermal temperature emerges as a critical parameter governing the compositional and structural transformation from MnO2 NWs to MnOOH, Mn3O4, and MnCO3 nanorods embedded within conductive PPy nanotubes. Consequently, the optimized Mn3O4-based composites exhibit remarkably enhanced oxidase-mimicking activity, achieving great improvement in catalytic efficiency. Owing to this superior oxidase-like performance, a highly sensitive cysteine sensing platform was constructed. This work establishes a modular platform for designing hybrid nanozymes by integrating structural directionality (1D tubular architecture) with compositional tunability (metal oxide–polymer interfaces), offering promising opportunities in biosensing, environmental remediation, and energy-related catalytic applications.

Abstract Image

活性二氧化锰纳米线模板辅助合成管状锰基聚吡咯复合材料的高性能类氧化酶催化
开发具有定制活性和结构通用性的生物启发纳米酶仍然是先进的酶模拟系统的关键挑战。在此,我们展示了一种简单的一步水热方法来构建一维(1D)管状mn基聚吡咯(PPy)混合结构,使用二氧化锰纳米线(NWs)作为双功能模板和氧化聚合剂。该策略能够精确控制组成梯度和形态演化,其中水热温度成为控制MnO2 NWs到嵌入导电PPy纳米管中的MnOOH、Mn3O4和MnCO3纳米棒的组成和结构转变的关键参数。因此,优化后的mn3o4基复合材料表现出明显增强的氧化酶模拟活性,从而大大提高了催化效率。由于这种优异的类氧化酶性能,构建了高灵敏度的半胱氨酸传感平台。这项工作建立了一个模块化的平台,通过整合结构方向性(一维管状结构)和组成可调性(金属氧化物-聚合物界面)来设计混合纳米酶,为生物传感、环境修复和能源相关的催化应用提供了有希望的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信