The Origin of Strong Perpendicular Magnetic Anisotropy in a Ferromagnetic Fe3GaTe2 Monolayer

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaobo Shi*, , , Na Zhang, , , Yihang Bai, , , Heyang Yuan, , , Jinjin Liu, , , Xin Zhang, , and , Bing Wang*, 
{"title":"The Origin of Strong Perpendicular Magnetic Anisotropy in a Ferromagnetic Fe3GaTe2 Monolayer","authors":"Xiaobo Shi*,&nbsp;, ,&nbsp;Na Zhang,&nbsp;, ,&nbsp;Yihang Bai,&nbsp;, ,&nbsp;Heyang Yuan,&nbsp;, ,&nbsp;Jinjin Liu,&nbsp;, ,&nbsp;Xin Zhang,&nbsp;, and ,&nbsp;Bing Wang*,&nbsp;","doi":"10.1021/acs.cgd.5c00977","DOIUrl":null,"url":null,"abstract":"<p >Magnetic anisotropy is pivotal for stabilizing ferromagnetic (FM) order against thermal fluctuations in two-dimensional (2D) systems. Motivated by the recent synthesis of the Fe<sub>3</sub>GaTe<sub>2</sub> monolayer, we systematically investigate the origin of its strong perpendicular magnetic anisotropy (PMA) through first-principles calculations. Our results reveal that the robust PMA─persistent under external perturbations─originates from spin–orbit coupling (SOC)-driven hybridization between occupied and unoccupied p<sub><i>x</i></sub>/p<sub><i>y</i></sub> orbitals of Te atoms, with additional contributions from magnetic dipole–dipole interactions. Furthermore, dynamic stability (validated by phonon dispersion spectra), thermal stability (confirmed via ab initio molecular dynamics simulations), and mechanical stability (supported by elastic constants) collectively demonstrate the material’s structural robustness. These findings provide fundamental insights into the microscopic mechanisms governing the magnetic anisotropy in 2D magnetic materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 19","pages":"8165–8171"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00977","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic anisotropy is pivotal for stabilizing ferromagnetic (FM) order against thermal fluctuations in two-dimensional (2D) systems. Motivated by the recent synthesis of the Fe3GaTe2 monolayer, we systematically investigate the origin of its strong perpendicular magnetic anisotropy (PMA) through first-principles calculations. Our results reveal that the robust PMA─persistent under external perturbations─originates from spin–orbit coupling (SOC)-driven hybridization between occupied and unoccupied px/py orbitals of Te atoms, with additional contributions from magnetic dipole–dipole interactions. Furthermore, dynamic stability (validated by phonon dispersion spectra), thermal stability (confirmed via ab initio molecular dynamics simulations), and mechanical stability (supported by elastic constants) collectively demonstrate the material’s structural robustness. These findings provide fundamental insights into the microscopic mechanisms governing the magnetic anisotropy in 2D magnetic materials.

Abstract Image

铁磁Fe3GaTe2单层中强垂直磁各向异性的来源
磁各向异性是稳定二维(2D)系统中铁磁(FM)顺序以抵抗热波动的关键。受近年来Fe3GaTe2单层合成的启发,我们通过第一性原理计算系统地研究了其强垂直磁各向异性(PMA)的起源。我们的研究结果表明,在外部扰动下持续存在的鲁棒PMA源自Te原子占据和未占据的px/py轨道之间的自旋轨道耦合(SOC)驱动的杂化,还有磁偶极子-偶极子相互作用的额外贡献。此外,动态稳定性(通过声子色散谱验证),热稳定性(通过从头算分子动力学模拟证实)和机械稳定性(由弹性常数支持)共同证明了材料的结构稳健性。这些发现为二维磁性材料磁各向异性的微观机制提供了基本的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信