Activation of bifunctional perovskite oxides through exsolution in symmetrical solid oxide cells: Recent advances, challenges, and outlook

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-10-01 DOI:10.1016/j.matt.2025.102388
Roelf Maring , Vasileios Kyriakou
{"title":"Activation of bifunctional perovskite oxides through exsolution in symmetrical solid oxide cells: Recent advances, challenges, and outlook","authors":"Roelf Maring ,&nbsp;Vasileios Kyriakou","doi":"10.1016/j.matt.2025.102388","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cells (SOCs) are devices that combine operating flexibility and high energy efficiency due to favored thermodynamics, enhanced kinetics, and the ability to exploit waste heat from industrial processes. To enable flexibility, however, symmetrical SOC (SSOC) configurations are required to employ bifunctional, redox-stable, and mixed ionic-electronic-conducting (MIEC) electrodes. The electrocatalytic properties of MIEC electrodes can be boosted by introducing catalytically active and sintering-/coking-tolerant nanoparticles through the redox exsolution method. Here, we explore the synergy between exsolution and SSOCs by using a comprehensive summary of recent advances in this field as a framework. We discuss the exsolved particles and host perovskite combinations while assessing the effect of the exsolution-triggering agents. The present review offers critical insights and guidance for identifying opportunities in new chemistries, cell pretreatments, and designs that could support SSOC technology in overcoming challenges and ultimately achieving commercial viability.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 10","pages":"Article 102388"},"PeriodicalIF":17.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852500431X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cells (SOCs) are devices that combine operating flexibility and high energy efficiency due to favored thermodynamics, enhanced kinetics, and the ability to exploit waste heat from industrial processes. To enable flexibility, however, symmetrical SOC (SSOC) configurations are required to employ bifunctional, redox-stable, and mixed ionic-electronic-conducting (MIEC) electrodes. The electrocatalytic properties of MIEC electrodes can be boosted by introducing catalytically active and sintering-/coking-tolerant nanoparticles through the redox exsolution method. Here, we explore the synergy between exsolution and SSOCs by using a comprehensive summary of recent advances in this field as a framework. We discuss the exsolved particles and host perovskite combinations while assessing the effect of the exsolution-triggering agents. The present review offers critical insights and guidance for identifying opportunities in new chemistries, cell pretreatments, and designs that could support SSOC technology in overcoming challenges and ultimately achieving commercial viability.

Abstract Image

Abstract Image

双功能钙钛矿氧化物在对称固体氧化物电池中的溶出活化:最新进展、挑战和展望
固体氧化物电池(soc)是一种结合了操作灵活性和高能效的设备,因为它具有良好的热力学、增强的动力学和利用工业过程废热的能力。然而,为了实现灵活性,对称SOC (SSOC)配置需要采用双功能、氧化还原稳定和混合离子-电子-导电(MIEC)电极。通过氧化还原溶出法引入具有催化活性和耐烧结/结焦的纳米颗粒,可以提高MIEC电极的电催化性能。在这里,我们通过对该领域最新进展的全面总结作为框架,探讨了exsolution和ssoc之间的协同作用。我们讨论了脱溶颗粒和宿主钙钛矿组合,同时评估了脱溶触发剂的影响。本综述为识别新化学、细胞预处理和设计的机会提供了重要的见解和指导,这些机会可以支持SSOC技术克服挑战并最终实现商业可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信