Tailor Control of Neodymium Doping Sites in γ‐MnO2 for Stable Oxygen Evolution Reaction in Acidic Electrolyte

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qinqin Hu, Ailong Li, Yimeng Sun, Lin Liu, Taifeng Liu, Can Li, Hongxian Han
{"title":"Tailor Control of Neodymium Doping Sites in γ‐MnO2 for Stable Oxygen Evolution Reaction in Acidic Electrolyte","authors":"Qinqin Hu, Ailong Li, Yimeng Sun, Lin Liu, Taifeng Liu, Can Li, Hongxian Han","doi":"10.1002/adfm.202423709","DOIUrl":null,"url":null,"abstract":"Large‐scale application of proton exchange membrane (PEM) water electrolysis for green hydrogen production is greatly limited by the cost and availability of precious metal catalysts (mainly Iridium‐based). Therefore, it is necessary to develop efficient, cost‐effective oxygen evolution reaction (OER) electrocatalysts for the replacement of Ir. In this study, the introduction of 1 mol% Neodymium (Nd) into γ‐MnO<jats:sub>2</jats:sub> is found to extend the lifetime of γ‐MnO<jats:sub>2</jats:sub> to ≈1000 h at 100 mA cm<jats:sup>−2</jats:sup> in acidic electrolyte without loss of activity. The extension of catalyst lifetime is attributed to an increase in the dissolution potential of MnO<jats:sub>4</jats:sub><jats:sup>−</jats:sup> by 50 mV, as indicated by in situ UV–vis spectro‐electrochemical measurements. Density functional theory (DFT) calculations suggest that Nd atoms are preferentially doped into the edge‐sharing Mn octahedral in ramsdellite phase, resulting in optimized binding energy between the catalyst and the oxygen intermediates. This work demonstrates that Nd element doping can modulate electronic structures to improve the catalytic stability of Mn‐based OER catalysts, highlighting the possibility of using earth‐abundant OER catalysts for PEM water electrolysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423709","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large‐scale application of proton exchange membrane (PEM) water electrolysis for green hydrogen production is greatly limited by the cost and availability of precious metal catalysts (mainly Iridium‐based). Therefore, it is necessary to develop efficient, cost‐effective oxygen evolution reaction (OER) electrocatalysts for the replacement of Ir. In this study, the introduction of 1 mol% Neodymium (Nd) into γ‐MnO2 is found to extend the lifetime of γ‐MnO2 to ≈1000 h at 100 mA cm−2 in acidic electrolyte without loss of activity. The extension of catalyst lifetime is attributed to an increase in the dissolution potential of MnO4 by 50 mV, as indicated by in situ UV–vis spectro‐electrochemical measurements. Density functional theory (DFT) calculations suggest that Nd atoms are preferentially doped into the edge‐sharing Mn octahedral in ramsdellite phase, resulting in optimized binding energy between the catalyst and the oxygen intermediates. This work demonstrates that Nd element doping can modulate electronic structures to improve the catalytic stability of Mn‐based OER catalysts, highlighting the possibility of using earth‐abundant OER catalysts for PEM water electrolysis.
γ - MnO2中钕掺杂位点在酸性电解质中稳定析氧反应的定制控制
质子交换膜(PEM)电解绿色制氢的大规模应用受到贵金属催化剂(主要是铱基催化剂)的成本和可用性的极大限制。因此,有必要开发出高效、经济的析氧反应(OER)电催化剂来替代Ir。在这项研究中,发现在酸性电解质中引入1mol %钕(Nd)可以将γ - MnO2在100 mA cm - 2下的寿命延长到约1000小时,而不会损失活性。现场紫外-可见光谱电化学测量表明,催化剂寿命的延长是由于MnO4−的溶解电位增加了50 mV。密度泛函理论(DFT)计算表明,在ramsdellite相中,Nd原子被优先掺杂到共享边缘的Mn八面体中,从而优化了催化剂与氧中间体之间的结合能。这项工作表明,Nd元素掺杂可以调节电子结构,以提高Mn基OER催化剂的催化稳定性,突出了使用富含地球元素的OER催化剂进行PEM水电解的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信