Aijing Zhang , Jianguo Zheng , Yingying Xu , Shuai Fu , Qinglong Du , Chengyang Zhao , Yuxiang Meng , Mengqi Li , Lin Wang , Shuliang Wang , Tongrui Shi , Chen Yang , Peihong Jiang , Yiping Wang , Zhongwei Zhao , Zhao Zhang , Shuo Zhao , Xin Qin , Huimin Geng , Nengwang Yu
{"title":"Targeting polyamine metabolism induces oxidative/carbonyl stress to reinvigorate antitumor immunity in prostate cancer","authors":"Aijing Zhang , Jianguo Zheng , Yingying Xu , Shuai Fu , Qinglong Du , Chengyang Zhao , Yuxiang Meng , Mengqi Li , Lin Wang , Shuliang Wang , Tongrui Shi , Chen Yang , Peihong Jiang , Yiping Wang , Zhongwei Zhao , Zhao Zhang , Shuo Zhao , Xin Qin , Huimin Geng , Nengwang Yu","doi":"10.1016/j.jconrel.2025.114283","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy of prostate cancer (PCa) remains challenging due to the immunosuppressive nature of the tumor microenvironment (TME). Oxidative damage enhances immunogenic cell death (ICD) to counteract immunotherapy resistance in PCa, but is limited by tumor antioxidant defenses and single-modality reactive oxygen species (ROS) generation in the TME. Herein, we report an innovative polyamine-based strategy that overproduces hydrogen peroxide and acrolein to simultaneously induce oxidative/carbonyl stress while suppressing endogenous antioxidant systems, thereby synergistically amplifying oxidative/carbonyl damage, which triggers robust ICD and achieves potent antitumor efficacy. Both <em>in vitro</em> and <em>in vivo</em> assays demonstrated that the nanoparticles, modified with a PCa-targeting peptide, could generate acrolein to induce mitochondrial destruction, DNA damage, and accumulate lipid peroxidation. In addition, they enhanced the recruitment of mature dendritic cells and T cells within the TME, thus inhibiting lung metastasis and tumor rechallenge. This work proposes an immunotherapy strategy using polyamine metabolism to induce combined carbonyl and oxidative stress, providing a novel approach for overcoming cold TME resistance in advanced PCa.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"388 ","pages":"Article 114283"},"PeriodicalIF":11.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592500896X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy of prostate cancer (PCa) remains challenging due to the immunosuppressive nature of the tumor microenvironment (TME). Oxidative damage enhances immunogenic cell death (ICD) to counteract immunotherapy resistance in PCa, but is limited by tumor antioxidant defenses and single-modality reactive oxygen species (ROS) generation in the TME. Herein, we report an innovative polyamine-based strategy that overproduces hydrogen peroxide and acrolein to simultaneously induce oxidative/carbonyl stress while suppressing endogenous antioxidant systems, thereby synergistically amplifying oxidative/carbonyl damage, which triggers robust ICD and achieves potent antitumor efficacy. Both in vitro and in vivo assays demonstrated that the nanoparticles, modified with a PCa-targeting peptide, could generate acrolein to induce mitochondrial destruction, DNA damage, and accumulate lipid peroxidation. In addition, they enhanced the recruitment of mature dendritic cells and T cells within the TME, thus inhibiting lung metastasis and tumor rechallenge. This work proposes an immunotherapy strategy using polyamine metabolism to induce combined carbonyl and oxidative stress, providing a novel approach for overcoming cold TME resistance in advanced PCa.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.