Thermally-Driven Conformational Twist in Organic Azobenzene Linker Activates Molecular Doping Effect in Thin Films of Lanthanide MOFs

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Umashis Bhoi, Mini Kalyani, K. S. Ananthram, Sauvik Saha, Aradhana Acharya, Nahid Hassan, Minnu Raj, Kartick Tarafder, Nirmalya Ballav
{"title":"Thermally-Driven Conformational Twist in Organic Azobenzene Linker Activates Molecular Doping Effect in Thin Films of Lanthanide MOFs","authors":"Umashis Bhoi, Mini Kalyani, K. S. Ananthram, Sauvik Saha, Aradhana Acharya, Nahid Hassan, Minnu Raj, Kartick Tarafder, Nirmalya Ballav","doi":"10.1039/d5ta05740j","DOIUrl":null,"url":null,"abstract":"Azobenzene-based photo-switchable molecules have shown significant potential in stimuli-responsive systems, especially when incorporated into metal-organic frameworks (MOFs). This study reports thin films of lanthanide-based metal-organic frameworks (Ln-MOFs) with 4,4′-azobenzene dicarboxylic acid (H2ADA) as the organic linker – Tb-ADA, Eu-ADA, and Gd-ADA – using an electrodeposition method. Upon heating to 400 K, a reversible structural transition was observed via variable temperature grazing-incidence X-ray diffraction (GIXRD) and Raman spectroscopy, not due to trans-cis isomerization but rather a thermally-induced conformational twist of the ADA linker. Density functional theory (DFT) combined with molecular dynamics (MD) simulations supports this interpretation, revealing high-energy atropisomeric states stabilized by MOF confinement. Molecular doping of these films with 7,7,8,8-tetracyanoquinodimethane (TCNQ) significantly enhanced their electrical conductivity, increasing by two orders of magnitude at 400 K. This enhancement is attributed to improved π-π stacking and charge-transfer interactions facilitated by the conformational twist. Temperature-dependent X-ray photoelectron spectroscopy (XPS) confirmed redox activity in TCNQ@Tb-ADA films, showing reversible conversion between Tb(III) and Tb(IV), with back electron transfer at 400 K restoring Tb(III). These findings introduce a new mechanism of thermally-driven conformational switching in MOFs and open avenues for developing responsive electronic materials based on azobenzene linkers.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"23 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta05740j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Azobenzene-based photo-switchable molecules have shown significant potential in stimuli-responsive systems, especially when incorporated into metal-organic frameworks (MOFs). This study reports thin films of lanthanide-based metal-organic frameworks (Ln-MOFs) with 4,4′-azobenzene dicarboxylic acid (H2ADA) as the organic linker – Tb-ADA, Eu-ADA, and Gd-ADA – using an electrodeposition method. Upon heating to 400 K, a reversible structural transition was observed via variable temperature grazing-incidence X-ray diffraction (GIXRD) and Raman spectroscopy, not due to trans-cis isomerization but rather a thermally-induced conformational twist of the ADA linker. Density functional theory (DFT) combined with molecular dynamics (MD) simulations supports this interpretation, revealing high-energy atropisomeric states stabilized by MOF confinement. Molecular doping of these films with 7,7,8,8-tetracyanoquinodimethane (TCNQ) significantly enhanced their electrical conductivity, increasing by two orders of magnitude at 400 K. This enhancement is attributed to improved π-π stacking and charge-transfer interactions facilitated by the conformational twist. Temperature-dependent X-ray photoelectron spectroscopy (XPS) confirmed redox activity in TCNQ@Tb-ADA films, showing reversible conversion between Tb(III) and Tb(IV), with back electron transfer at 400 K restoring Tb(III). These findings introduce a new mechanism of thermally-driven conformational switching in MOFs and open avenues for developing responsive electronic materials based on azobenzene linkers.
有机偶氮苯连接体中的热驱动构象扭曲激活镧系mof薄膜中的分子掺杂效应
偶氮苯基光开关分子在刺激响应系统中显示出巨大的潜力,特别是当它被纳入金属有机框架(MOFs)中时。本研究报道了以4,4′-偶氮苯二甲酸(H2ADA)为有机连接剂的镧系金属有机骨架(Ln-MOFs)薄膜,分别为Tb-ADA、Eu-ADA和Gd-ADA。加热至400 K时,通过变温掠射x射线衍射(GIXRD)和拉曼光谱观察到可逆的结构转变,不是由于反式异构化,而是由于热诱导的ADA连接体构象扭曲。密度泛函理论(DFT)结合分子动力学(MD)模拟支持这一解释,揭示了MOF约束稳定的高能atrosomomer状态。分子掺杂7,7,8,8-四氰喹诺二甲烷(TCNQ)显著提高了薄膜的电导率,在400 K时提高了两个数量级。这种增强是由于构象扭曲促进了π-π堆积和电荷转移相互作用的改善。温度相关的x射线光电子能谱(XPS)证实了TCNQ@Tb-ADA薄膜的氧化还原活性,显示出Tb(III)和Tb(IV)之间的可逆转化,400 K下的反向电子转移恢复了Tb(III)。这些发现为mof中热驱动的构象转换提供了新的机制,为开发基于偶氮苯连接剂的响应电子材料开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信