Unveiling the Role of Topological Surface States in Boosting Electrocatalytic Nitrate Reduction to Ammonia

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tingting Liang, Jiangnan Lv, Lanfang Wang, Qianwen Yang, Jianlei Shen, Xiaoting Sun, Wanting Rong, Qiqi Dai, Fang Wang, Yang Liu
{"title":"Unveiling the Role of Topological Surface States in Boosting Electrocatalytic Nitrate Reduction to Ammonia","authors":"Tingting Liang, Jiangnan Lv, Lanfang Wang, Qianwen Yang, Jianlei Shen, Xiaoting Sun, Wanting Rong, Qiqi Dai, Fang Wang, Yang Liu","doi":"10.1002/aenm.202503473","DOIUrl":null,"url":null,"abstract":"Designing efficient catalysts for nitrate reduction reaction (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR) poses a challenge in advancing the selectivity and yield of ammonia (NH<jats:sub>3</jats:sub>). Unlike conventional catalytic descriptors, topological surface states (TSSs) represent an orthogonal avenue for tailoring catalytic properties, while its role in NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR remains unknown. Here, the semimetallic character of Co<jats:sub>3</jats:sub>Sn<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub>, endowed with robust TSSs is leveraged and enhances charge transport characteristics, to establish this system as a prototypical platform for decoding surface state‐governed NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR mechanism. The catalyst exhibits exceptional NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR performance, achieving a maximum NH<jats:sub>3</jats:sub> Faradaic efficiency of 91.6% at −0.5 V<jats:sub>RHE</jats:sub> and a high NH<jats:sub>3</jats:sub> yield of 22.4 mg h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup> at −0.6 V<jats:sub>RHE</jats:sub>, while maintaining excellent stability over 200 h in a membrane–electrode assembly electrolyzer, outperforming its semiconductor counterparts. In situ experiments and density functional theory calculations reveal that the TSSs accelerate charge transfer kinetics as well as alleviate the energy barrier for the *NOH → *N step. This work highlights the critical role of TSSs in governing electrocatalytic mechanisms and advances the rational design of high‐performance topological NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR catalysts.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"71 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing efficient catalysts for nitrate reduction reaction (NO3RR) poses a challenge in advancing the selectivity and yield of ammonia (NH3). Unlike conventional catalytic descriptors, topological surface states (TSSs) represent an orthogonal avenue for tailoring catalytic properties, while its role in NO3RR remains unknown. Here, the semimetallic character of Co3Sn2S2, endowed with robust TSSs is leveraged and enhances charge transport characteristics, to establish this system as a prototypical platform for decoding surface state‐governed NO3RR mechanism. The catalyst exhibits exceptional NO3RR performance, achieving a maximum NH3 Faradaic efficiency of 91.6% at −0.5 VRHE and a high NH3 yield of 22.4 mg h−1 cm−2 at −0.6 VRHE, while maintaining excellent stability over 200 h in a membrane–electrode assembly electrolyzer, outperforming its semiconductor counterparts. In situ experiments and density functional theory calculations reveal that the TSSs accelerate charge transfer kinetics as well as alleviate the energy barrier for the *NOH → *N step. This work highlights the critical role of TSSs in governing electrocatalytic mechanisms and advances the rational design of high‐performance topological NO3RR catalysts.
揭示拓扑表面态在促进电催化硝酸还原制氨中的作用
设计高效的硝酸还原反应(NO3 - RR)催化剂是提高氨(NH3)选择性和产率的一个挑战。与传统的催化描述符不同,拓扑表面态(tss)代表了一种裁剪催化性能的正交途径,但其在NO3−RR中的作用尚不清楚。本文利用Co3Sn2S2的半金属特性,增强其电荷输运特性,将其建立为解码表面状态控制的NO3 - RR机制的原型平台。该催化剂表现出优异的NO3 - RR性能,在−0.5 VRHE下NH3法拉第效率达到91.6%,在−0.6 VRHE下NH3产率达到22.4 mg h−1 cm−2,同时在膜电极组装电解槽中保持200 h以上的优异稳定性,优于半导体同类产品。原位实验和密度泛函理论计算表明,TSSs加速了*NOH→*N步骤的电荷转移动力学,减轻了*NOH→*N步骤的能量势垒。这项工作强调了tss在控制电催化机制中的关键作用,并推进了高性能拓扑NO3 - RR催化剂的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信