{"title":"Noninvasive Optoacoustic Imaging of Oxygen Saturation Reveals Hypoxic Hematopoietic Bone Marrow during Systemic Inflammation.","authors":"Ashish Tiwari,Narmeen Haj,Ruth Pikovsky,Shirly Hagay,Maria Berihu,Betsalel Elgrably,Liron McLey,Majd Machour,Shiri Karni-Ashkenazi,Inbar Brosh,Shy Shoham,Shulamit Levenberg,Daniel Razansky,Amir Rosenthal,Katrien Vandoorne","doi":"10.1021/acs.nanolett.5c01802","DOIUrl":null,"url":null,"abstract":"Inflammation drives various diseases, including cardiovascular, neurodegenerative, and oncological disorders, by altering immune cell dynamics in hematopoietic niches. The bone marrow is the primary site for hematopoietic stem and progenitor cell activity. Here, we present a novel, noninvasive approach using multispectral optoacoustic tomography (MSOT) to track oxygenation dynamics in the murine calvarial bone marrow during acute systemic inflammation induced by lipopolysaccharide (LPS). Our MSOT system provided real-time, label-free imaging of hemoglobin oxygen saturation (sO2), revealing significant reductions in sO2 levels in lipopolysaccharide-treated mice, indicative of increased oxygen consumption. Co-registration with microCT enabled precise vascular mapping. Hypoxia was confirmed by ex vivo Pimonidazole staining and optical imaging and was associated with elevated neutrophil counts and enhanced hematopoietic activation. These findings demonstrate MSOT's potential for noninvasive imaging of marrow oxygenation, offering insights into inflammation-driven hematopoietic activation and supporting the development of therapies targeting oxygen-sensitive pathways.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"8 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01802","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation drives various diseases, including cardiovascular, neurodegenerative, and oncological disorders, by altering immune cell dynamics in hematopoietic niches. The bone marrow is the primary site for hematopoietic stem and progenitor cell activity. Here, we present a novel, noninvasive approach using multispectral optoacoustic tomography (MSOT) to track oxygenation dynamics in the murine calvarial bone marrow during acute systemic inflammation induced by lipopolysaccharide (LPS). Our MSOT system provided real-time, label-free imaging of hemoglobin oxygen saturation (sO2), revealing significant reductions in sO2 levels in lipopolysaccharide-treated mice, indicative of increased oxygen consumption. Co-registration with microCT enabled precise vascular mapping. Hypoxia was confirmed by ex vivo Pimonidazole staining and optical imaging and was associated with elevated neutrophil counts and enhanced hematopoietic activation. These findings demonstrate MSOT's potential for noninvasive imaging of marrow oxygenation, offering insights into inflammation-driven hematopoietic activation and supporting the development of therapies targeting oxygen-sensitive pathways.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.