{"title":"Synergistic Enhancement of β-NiOOH Electrocatalytic Oxygen Evolution Reaction Performance through Transition Metal Atom Doping and Vacancy Modulating","authors":"Chenghuan Zhong, Daijian Li, Shimao Xie, Pengcheng Yang, Jiao Teng, Yeyun Kang, Jianfeng Tang, Hua Lin, Chunmei Li","doi":"10.1016/j.electacta.2025.147485","DOIUrl":null,"url":null,"abstract":"Layered <em>β</em>-NiOOH exhibits potential as a non-precious electrocatalyst for the oxygen evolution reaction (OER) owing to its tunable electronic structure through doping and defect modulating. However, the mechanistic relationship between the potential-determining step (PDS) energy barrier and the demand for modulating the electronic structure of the active center remains unresolved. This work systematically investigates the effects of compositional tuning (Cr, Mn, Fe, Co, Cu, Zn, Rh), vacancy modulation (H, O, OH), and their synergistic effect on the OER properties of <em>β</em>-NiOOH using density-functional theory calculations. Results reveal that <em>β</em>-NiOOH achieves superior OER performance through the lattice oxygen mechanism with OH as active sites, where the PDS (*O→*OOH, 0.98 V) suggests weak OHˉ adsorption and an electron-rich active center. Notably, Cu-doping combined with H-vacancy synergistically reduces the overpotential to 0.53 V. This enhancement is attributed to the co-regulation of dopant-vacancy. The d band center moved away from the Fermi level, doping-induced spin polarization promoting d-p hybridization, and increased Bader charge of *OOH from 0.67 e (<em>β</em>-NiOOH) to 1.29 e (Cu<sub>IV</sub>-NiOOH-V<sub>H-3</sub>), collectively facilitating electron escape from the active site, thereby enhancing OHˉ adsorption and lowering energy barriers. Additionally, the descriptor (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">&#x3C8;</mi><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">M</mi></mrow><mn is=\"true\">3</mn></msubsup><mo linebreak=\"badbreak\" is=\"true\">+</mo><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msub is=\"true\"><mi is=\"true\">I</mi><mn is=\"true\">1</mn></msub><mo is=\"true\">)</mo></mrow><mo linebreak=\"badbreak\" is=\"true\">/</mo><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><mi is=\"true\">&#x3C7;</mi></mrow></mrow></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 10739.3 1395\" width=\"24.943ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C8\"></use></g><g is=\"true\" transform=\"translate(929,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1985,0)\"><g is=\"true\"><use is=\"true\" xlink:href=\"#MJSZ1-28\"></use><g is=\"true\" transform=\"translate(458,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(1292,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-56\"></use></g><g is=\"true\" transform=\"translate(825,360)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g><g is=\"true\" transform=\"translate(583,-320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(498,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4D\"></use></g></g></g><g is=\"true\" transform=\"translate(3439,0)\"><use xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(4440,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(5273,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-49\"></use></g><g is=\"true\" transform=\"translate(440,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><use is=\"true\" x=\"6168\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use></g><g is=\"true\" transform=\"translate(6793,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(7293,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-3C7\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">ψ</mi><mo is=\"true\" linebreak=\"goodbreak\">=</mo><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">M</mi></mrow><mn is=\"true\">3</mn></msubsup><mo is=\"true\" linebreak=\"badbreak\">+</mo><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">I</mi><mn is=\"true\">1</mn></msub><mo is=\"true\">)</mo></mrow><mo is=\"true\" linebreak=\"badbreak\">/</mo><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><mi is=\"true\">χ</mi></mrow></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">ψ</mi><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\">T</mi><mi is=\"true\">M</mi></mrow><mn is=\"true\">3</mn></msubsup><mo linebreak=\"badbreak\" is=\"true\">+</mo><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">I</mi><mn is=\"true\">1</mn></msub><mo is=\"true\">)</mo></mrow><mo linebreak=\"badbreak\" is=\"true\">/</mo><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><mi is=\"true\">χ</mi></mrow></mrow></mrow></math></script></span>) for the compositional modulation of <em>β</em>-NiOOH was established, exhibiting strong correlations with valence electron count difference (Δ<em>V<sub>TM</sub></em>), first ionization energy difference (Δ<em>I</em><sub>1</sub>), and electronegativity difference (Δ<em>χ</em>) between dopants and Ni. Fitting result demonstrates a significant linear relationship between descriptor and OER overpotential variation (Δ<em>η</em>, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><mi is=\"true\">&#x3B7;</mi><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mo is=\"true\">&#x2212;</mo><mn is=\"true\">1.20</mn><mi is=\"true\">&#x3C8;</mi><mo linebreak=\"goodbreak\" is=\"true\">+</mo><mn is=\"true\">0.24</mn></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 8884 1096.9\" width=\"20.634ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-3B7\"></use></g><g is=\"true\" transform=\"translate(1614,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(2671,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(3449,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"1279\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(5229,0)\"><use xlink:href=\"#MJMATHI-3C8\"></use></g><g is=\"true\" transform=\"translate(6103,0)\"><use xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(7104,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"1279\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><mi is=\"true\">η</mi><mo is=\"true\" linebreak=\"goodbreak\">=</mo><mo is=\"true\">−</mo><mn is=\"true\">1.20</mn><mi is=\"true\">ψ</mi><mo is=\"true\" linebreak=\"goodbreak\">+</mo><mn is=\"true\">0.24</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><mi is=\"true\">η</mi><mo linebreak=\"goodbreak\" is=\"true\">=</mo><mo is=\"true\">−</mo><mn is=\"true\">1.20</mn><mi is=\"true\">ψ</mi><mo linebreak=\"goodbreak\" is=\"true\">+</mo><mn is=\"true\">0.24</mn></mrow></math></script></span>, R<sup>2</sup> = 0.92). This work offers practical and theoretical guidance for the development of high-performance OER electrocatalysts.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"33 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.147485","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered β-NiOOH exhibits potential as a non-precious electrocatalyst for the oxygen evolution reaction (OER) owing to its tunable electronic structure through doping and defect modulating. However, the mechanistic relationship between the potential-determining step (PDS) energy barrier and the demand for modulating the electronic structure of the active center remains unresolved. This work systematically investigates the effects of compositional tuning (Cr, Mn, Fe, Co, Cu, Zn, Rh), vacancy modulation (H, O, OH), and their synergistic effect on the OER properties of β-NiOOH using density-functional theory calculations. Results reveal that β-NiOOH achieves superior OER performance through the lattice oxygen mechanism with OH as active sites, where the PDS (*O→*OOH, 0.98 V) suggests weak OHˉ adsorption and an electron-rich active center. Notably, Cu-doping combined with H-vacancy synergistically reduces the overpotential to 0.53 V. This enhancement is attributed to the co-regulation of dopant-vacancy. The d band center moved away from the Fermi level, doping-induced spin polarization promoting d-p hybridization, and increased Bader charge of *OOH from 0.67 e (β-NiOOH) to 1.29 e (CuIV-NiOOH-VH-3), collectively facilitating electron escape from the active site, thereby enhancing OHˉ adsorption and lowering energy barriers. Additionally, the descriptor () for the compositional modulation of β-NiOOH was established, exhibiting strong correlations with valence electron count difference (ΔVTM), first ionization energy difference (ΔI1), and electronegativity difference (Δχ) between dopants and Ni. Fitting result demonstrates a significant linear relationship between descriptor and OER overpotential variation (Δη, , R2 = 0.92). This work offers practical and theoretical guidance for the development of high-performance OER electrocatalysts.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.