Yubao Cheng, Shengyuan Dang, Yuan Zhang, Yanbo Chen, Ruihuan Yu, Miao Liu, Shengyan Jin, Ailin Han, Samuel Katz, Siyuan Wang
{"title":"Sequencing-free whole-genome spatial transcriptomics at single-molecule resolution","authors":"Yubao Cheng, Shengyuan Dang, Yuan Zhang, Yanbo Chen, Ruihuan Yu, Miao Liu, Shengyan Jin, Ailin Han, Samuel Katz, Siyuan Wang","doi":"10.1016/j.cell.2025.09.006","DOIUrl":null,"url":null,"abstract":"Recent breakthroughs in spatial transcriptomics technologies have enhanced our understanding of diverse cellular identities, spatial organizations, and functions. Yet existing spatial transcriptomics tools are still limited in either transcriptomic coverage or spatial resolution, hindering unbiased, hypothesis-free transcriptomic analyses at high spatial resolution. Here, we develop reverse-padlock amplicon-encoding fluorescence <em>in situ</em> hybridization (RAEFISH), an image-based spatial transcriptomics method with whole-genome coverage and single-molecule resolution in intact tissues. We demonstrate the spatial profiling of transcripts from 23,000 human or 22,000 mouse genes in single cells and tissue sections. Our analyses reveal transcript-specific subcellular localization, cell-type-specific and cell-type-invariant zonation-dependent transcriptomes, and gene programs underlying preferential cell-cell interactions. Finally, we further develop our technology for the direct spatial readout of guide RNAs (gRNAs) in an image-based, high-content CRISPR screen. Overall, these developments offer a broadly applicable technology that enables high-coverage, high-resolution spatial profiling of both long and short, native and engineered RNAs in many biomedical contexts.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"53 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.09.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent breakthroughs in spatial transcriptomics technologies have enhanced our understanding of diverse cellular identities, spatial organizations, and functions. Yet existing spatial transcriptomics tools are still limited in either transcriptomic coverage or spatial resolution, hindering unbiased, hypothesis-free transcriptomic analyses at high spatial resolution. Here, we develop reverse-padlock amplicon-encoding fluorescence in situ hybridization (RAEFISH), an image-based spatial transcriptomics method with whole-genome coverage and single-molecule resolution in intact tissues. We demonstrate the spatial profiling of transcripts from 23,000 human or 22,000 mouse genes in single cells and tissue sections. Our analyses reveal transcript-specific subcellular localization, cell-type-specific and cell-type-invariant zonation-dependent transcriptomes, and gene programs underlying preferential cell-cell interactions. Finally, we further develop our technology for the direct spatial readout of guide RNAs (gRNAs) in an image-based, high-content CRISPR screen. Overall, these developments offer a broadly applicable technology that enables high-coverage, high-resolution spatial profiling of both long and short, native and engineered RNAs in many biomedical contexts.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.