Highly Efficient Mn4+‐Doped Red‐Emitting Oxyfluorides with Excellent Water Resistance Toward Flexible Composite Fluorescent Optical Fiber Sensor

IF 10 1区 物理与天体物理 Q1 OPTICS
Min Liu, Hong Ming, Xixiang Pan, Jiacheng Zhang, Maxim S. Molokeev, Xinyu Ye
{"title":"Highly Efficient Mn4+‐Doped Red‐Emitting Oxyfluorides with Excellent Water Resistance Toward Flexible Composite Fluorescent Optical Fiber Sensor","authors":"Min Liu, Hong Ming, Xixiang Pan, Jiacheng Zhang, Maxim S. Molokeev, Xinyu Ye","doi":"10.1002/lpor.202501813","DOIUrl":null,"url":null,"abstract":"Flexible thermal sensors are crucial for monitoring the important thermodynamic parameter of temperature in daily life, industrial production, and scientific research. However, significant challenges remain in simultaneously achieving reproducible, sensitive, real‐time, and in situ temperature sensing capabilities. Herein, a Mn<jats:sup>4+</jats:sup> mono‐doped CsNaNbOF<jats:sub>5</jats:sub>:Mn<jats:sup>4+</jats:sup> (CNNOFM) phosphor is designed and synthesized as a dual‐mode optical thermometric material, showing high luminescence efficiencies and excellent temperature‐dependent behaviors. Combined density functional theory calculations and experimental characterization reveal the isovalent group substitution mechanism between [MnF<jats:sub>6</jats:sub>]<jats:sup>2−</jats:sup> and [NbOF<jats:sub>5</jats:sub>]<jats:sup>2−</jats:sup> octahedrons, eliminating charge compensation defects in the CNNOFM system and thereby leading to enhanced luminescence efficiencies. Furthermore, CNNOFM exhibits remarkable water resistance, retaining 88.12% of its luminescent efficiency after 4 h of water immersion. The CNNOFM demonstrates high relative sensitivity in both fluorescence intensity ratio and lifetime modes, with S<jats:sub>r</jats:sub> values of 0.37% K<jats:sup>−1</jats:sup> and 5.8% K<jats:sup>−1</jats:sup> at 440 K, respectively. Finally, a flexible composite fluorescent fiber temperature sensor is fabricated based on the CNNOFM phosphor to monitor the temperature of an ice‐water mixture, exhibiting satisfactory performance. This work not only provides a promising thermally sensitive material for optical thermometry but also offers a new pathway for the development of flexible optical temperature sensors.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"80 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501813","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible thermal sensors are crucial for monitoring the important thermodynamic parameter of temperature in daily life, industrial production, and scientific research. However, significant challenges remain in simultaneously achieving reproducible, sensitive, real‐time, and in situ temperature sensing capabilities. Herein, a Mn4+ mono‐doped CsNaNbOF5:Mn4+ (CNNOFM) phosphor is designed and synthesized as a dual‐mode optical thermometric material, showing high luminescence efficiencies and excellent temperature‐dependent behaviors. Combined density functional theory calculations and experimental characterization reveal the isovalent group substitution mechanism between [MnF6]2− and [NbOF5]2− octahedrons, eliminating charge compensation defects in the CNNOFM system and thereby leading to enhanced luminescence efficiencies. Furthermore, CNNOFM exhibits remarkable water resistance, retaining 88.12% of its luminescent efficiency after 4 h of water immersion. The CNNOFM demonstrates high relative sensitivity in both fluorescence intensity ratio and lifetime modes, with Sr values of 0.37% K−1 and 5.8% K−1 at 440 K, respectively. Finally, a flexible composite fluorescent fiber temperature sensor is fabricated based on the CNNOFM phosphor to monitor the temperature of an ice‐water mixture, exhibiting satisfactory performance. This work not only provides a promising thermally sensitive material for optical thermometry but also offers a new pathway for the development of flexible optical temperature sensors.
用于柔性复合荧光光纤传感器的高效掺Mn4+红发氟氧化物具有优异的耐水性
在日常生活、工业生产和科学研究中,柔性热传感器是监测温度这一重要热力学参数的关键。然而,在同时实现可重复、灵敏、实时和原位温度传感能力方面仍然存在重大挑战。本文设计并合成了一种Mn4+单掺杂CsNaNbOF5:Mn4+ (CNNOFM)荧光粉作为双模光学测温材料,具有较高的发光效率和优异的温度依赖行为。结合密度泛函理论计算和实验表征揭示了[MnF6]2 -和[NbOF5]2 -八面体之间的等价基取代机制,消除了CNNOFM系统中的电荷补偿缺陷,从而提高了发光效率。此外,CNNOFM在水中浸泡4 h后仍能保持其88.12%的发光效率。CNNOFM在荧光强度比和寿命模式下均表现出较高的相对灵敏度,在440 K时的Sr值分别为0.37% K−1和5.8% K−1。最后,基于CNNOFM荧光粉制备了柔性复合荧光纤维温度传感器,用于监测冰-水混合物的温度,表现出令人满意的性能。这项工作不仅为光学测温提供了一种有前途的热敏材料,而且为柔性光学温度传感器的发展提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信