Polydopamine‐Modified BiOX with Interfacial p‐Orbital Coupling Enhances Superoxide Conversion for Efficient Piezocatalytic H2O2 Production

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chunsheng Ding, Qiwen Su, Xiaowen Ruan, Dongxu Jiao, Hao Cai, Minghua Xu, Wei Zhang, Hongwei Huang, Sai Kishore Ravi, Xiaoqiang Cui
{"title":"Polydopamine‐Modified BiOX with Interfacial p‐Orbital Coupling Enhances Superoxide Conversion for Efficient Piezocatalytic H2O2 Production","authors":"Chunsheng Ding, Qiwen Su, Xiaowen Ruan, Dongxu Jiao, Hao Cai, Minghua Xu, Wei Zhang, Hongwei Huang, Sai Kishore Ravi, Xiaoqiang Cui","doi":"10.1002/aenm.202503493","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>) production via piezocatalysis offers a sustainable route to convert mechanical energy into chemical oxidants using water and oxygen. However, its efficiency is limited by sluggish surface redox kinetics, particularly the conversion of key radical intermediates (•O<jats:sub>2</jats:sub><jats:sup>−</jats:sup> and •OH), and by the kinetic mismatch between charge carrier transfer and proton availability. Here, a polydopamine‐modified bismuth oxide halide (BiOX, X = Cl, Br, I) catalyst is reported that achieves a high piezocatalytic H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> production rate of 3083 µmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> and maintains stable activity across a broad pH range (3–9). Spectroscopic analyses and density functional theory calculations reveal that the polydopamine layer introduces interfacial p‐orbital interactions between carbon (from polydopamine) and bismuth sites, which enhance O<jats:sub>2</jats:sub> adsorption, lower the energy barrier for •O<jats:sub>2</jats:sub><jats:sup>−</jats:sup> to •OOH conversion, and accelerate water oxidation for proton supply. This synergistic modulation of radical reaction pathways enables efficient and selective H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> generation. The as‐produced H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> demonstrates practical utility in pollutant degradation and antimicrobial applications. These findings establish a rational strategy for designing piezocatalysts by engineering interfacial orbital coupling to control reaction intermediate dynamics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"102 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) production via piezocatalysis offers a sustainable route to convert mechanical energy into chemical oxidants using water and oxygen. However, its efficiency is limited by sluggish surface redox kinetics, particularly the conversion of key radical intermediates (•O2 and •OH), and by the kinetic mismatch between charge carrier transfer and proton availability. Here, a polydopamine‐modified bismuth oxide halide (BiOX, X = Cl, Br, I) catalyst is reported that achieves a high piezocatalytic H2O2 production rate of 3083 µmol g−1 h−1 and maintains stable activity across a broad pH range (3–9). Spectroscopic analyses and density functional theory calculations reveal that the polydopamine layer introduces interfacial p‐orbital interactions between carbon (from polydopamine) and bismuth sites, which enhance O2 adsorption, lower the energy barrier for •O2 to •OOH conversion, and accelerate water oxidation for proton supply. This synergistic modulation of radical reaction pathways enables efficient and selective H2O2 generation. The as‐produced H2O2 demonstrates practical utility in pollutant degradation and antimicrobial applications. These findings establish a rational strategy for designing piezocatalysts by engineering interfacial orbital coupling to control reaction intermediate dynamics.
具有界面p轨道偶联的聚多巴胺修饰的BiOX增强超氧化物转化,用于高效的压催化H2O2生产
通过压电催化生产过氧化氢(H2O2)提供了一种利用水和氧气将机械能转化为化学氧化剂的可持续途径。然而,其效率受到缓慢的表面氧化还原动力学的限制,特别是关键自由基中间体(•O2−和•OH)的转化,以及电荷载流子转移和质子可用性之间的动力学不匹配。本文报道了一种聚多巴胺修饰的氧化铋卤化物(BiOX, X = Cl, Br, I)催化剂,该催化剂实现了3083 μ mol g−1 h−1的高压催化H2O2产率,并在较宽的pH范围内保持稳定的活性(3-9)。光谱分析和密度泛函数理论计算表明,聚多巴胺层引入了碳(来自聚多巴胺)和铋位点之间的界面p轨道相互作用,从而增强了O2吸附,降低了•O2−到•OOH转化的能垒,并加速了水氧化以提供质子。这种自由基反应途径的协同调节使H2O2的生成高效和选择性。产生的H2O2在污染物降解和抗菌应用中具有实际用途。这些发现为通过工程界面轨道耦合来控制反应中间动力学设计压电催化剂提供了合理的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信