{"title":"Diabetes reshapes pancreatic cancer-associated endothelial niche by accelerating senescence.","authors":"Yu-Wei Ling,Juan-Li Duan,Zi-Jian Jiang,Zhen Yang,Jing-Jing Liu,Ping Song,Zhi-Qiang Fang,Zhen-Sheng Yue,Fei He,Ke-Feng Dou,Lin Wang","doi":"10.1038/s41467-025-63801-8","DOIUrl":null,"url":null,"abstract":"Approximately half of pancreatic cancer patients present with comorbid diabetes. Diabetes is correlated with adverse prognostic outcomes in pancreatic cancer patients, but the underlying mechanism remains elusive. Here, we demonstrate that the cancer-associated endothelial niche is reshaped in the diabetic pancreatic tumor microenvironment and enhances the tumor-promoting capacity. Senescent endothelial cells expand in the diabetic tumor microenvironment and produce a potential senescence-associated secretory phenotype factor, i.e., INHBB. As a member of the TGF-β superfamily, INHBB promotes tumor progression and is regulated by Notch signaling. Pharmacological inhibition of INHBB receptors with bimagrumab effectively inhibited tumor progression in diabetic mice. Moreover, short-term bimagrumab treatment did not significantly decrease glucose levels in diabetic tumor-bearing mice. Combination treatment with metformin showed synergistic antitumor effects. In conclusion, our study identifies INHBB as a promising therapeutic target for pancreatic cancer with comorbid diabetes, laying the foundation for the development of individualized therapies for pancreatic cancer patients.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"99 1","pages":"8654"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63801-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Approximately half of pancreatic cancer patients present with comorbid diabetes. Diabetes is correlated with adverse prognostic outcomes in pancreatic cancer patients, but the underlying mechanism remains elusive. Here, we demonstrate that the cancer-associated endothelial niche is reshaped in the diabetic pancreatic tumor microenvironment and enhances the tumor-promoting capacity. Senescent endothelial cells expand in the diabetic tumor microenvironment and produce a potential senescence-associated secretory phenotype factor, i.e., INHBB. As a member of the TGF-β superfamily, INHBB promotes tumor progression and is regulated by Notch signaling. Pharmacological inhibition of INHBB receptors with bimagrumab effectively inhibited tumor progression in diabetic mice. Moreover, short-term bimagrumab treatment did not significantly decrease glucose levels in diabetic tumor-bearing mice. Combination treatment with metformin showed synergistic antitumor effects. In conclusion, our study identifies INHBB as a promising therapeutic target for pancreatic cancer with comorbid diabetes, laying the foundation for the development of individualized therapies for pancreatic cancer patients.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.