Energy-Efficient Dual Formate Electrosynthesis via Coupled Formaldehyde Oxidation and CO2 Reduction at Ultra-Low Cell Voltage.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyoseok Kim,Wonsik Jang,Jin Ho Lee,Hojeong Lee,Seunghyun Lee,Jongkyoung Kim,Dongrak Oh,Woo Yeong Noh,Miri Kim,Sun Gwan Cha,Jongchan Kim,Jae Sung Lee,Youngkook Kwon,Seungho Cho
{"title":"Energy-Efficient Dual Formate Electrosynthesis via Coupled Formaldehyde Oxidation and CO2 Reduction at Ultra-Low Cell Voltage.","authors":"Hyoseok Kim,Wonsik Jang,Jin Ho Lee,Hojeong Lee,Seunghyun Lee,Jongkyoung Kim,Dongrak Oh,Woo Yeong Noh,Miri Kim,Sun Gwan Cha,Jongchan Kim,Jae Sung Lee,Youngkook Kwon,Seungho Cho","doi":"10.1002/anie.202516232","DOIUrl":null,"url":null,"abstract":"Electrochemical formate (HCOO-) production via CO2 reduction reaction (CO2RR) holds great promise for carbon-neutral energy systems; however, its practical implementation is significantly hindered by the high energy demand of anodic oxygen evolution reaction (OER). Replacing OER with a more energetically and economically favorable alternative anodic reaction is therefore essential. In this study, we developed a highly efficient Cu-Ag catalyst for anodic formaldehyde oxidation reaction (FOR). Systematic investigations employing in situ Raman spectroscopy and comprehensive electrochemical analyses revealed that Cu enables an earlier onset potential for FOR, and Ag enhances formaldehyde adsorption, leading to synergistically improved performance. The optimal Cu3Ag7 catalyst exhibited superior FOR performance, with an onset potential of -0.05 V versus the reversible hydrogen electrode (VRHE) and Faradaic efficiencies for HCOO- exceeding 90% from 0.1 to 0.5 VRHE. When coupled with CO2RR, the FOR||CO2RR system enabled dual-side HCOO- production, achieving a total HCOO- yield rate of 0.39 mmol h-1 cm-2 at an ultra-low cell voltage of 0.5 V, surpassing the performance of previously reported electrochemical HCOO- production systems. Furthermore, this study presents a versatile anodic strategy that integrates FOR with a range of cathodic reactions, offering an energy-efficient chemical synthesis approach for the advancement of sustainable electrochemical technologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"25 1","pages":"e202516232"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical formate (HCOO-) production via CO2 reduction reaction (CO2RR) holds great promise for carbon-neutral energy systems; however, its practical implementation is significantly hindered by the high energy demand of anodic oxygen evolution reaction (OER). Replacing OER with a more energetically and economically favorable alternative anodic reaction is therefore essential. In this study, we developed a highly efficient Cu-Ag catalyst for anodic formaldehyde oxidation reaction (FOR). Systematic investigations employing in situ Raman spectroscopy and comprehensive electrochemical analyses revealed that Cu enables an earlier onset potential for FOR, and Ag enhances formaldehyde adsorption, leading to synergistically improved performance. The optimal Cu3Ag7 catalyst exhibited superior FOR performance, with an onset potential of -0.05 V versus the reversible hydrogen electrode (VRHE) and Faradaic efficiencies for HCOO- exceeding 90% from 0.1 to 0.5 VRHE. When coupled with CO2RR, the FOR||CO2RR system enabled dual-side HCOO- production, achieving a total HCOO- yield rate of 0.39 mmol h-1 cm-2 at an ultra-low cell voltage of 0.5 V, surpassing the performance of previously reported electrochemical HCOO- production systems. Furthermore, this study presents a versatile anodic strategy that integrates FOR with a range of cathodic reactions, offering an energy-efficient chemical synthesis approach for the advancement of sustainable electrochemical technologies.
超低电池电压下甲醛氧化和CO2还原耦合的高能效双甲酸盐电合成
通过CO2还原反应(CO2RR)产生的电化学甲酸(HCOO-)在碳中性能源系统中具有很大的应用前景;然而,阳极析氧反应(OER)的高能量需求严重阻碍了其实际应用。因此,用一种更节能、更经济的替代阳极反应取代OER是必要的。在本研究中,我们开发了一种高效的Cu-Ag阳极甲醛氧化反应催化剂。采用原位拉曼光谱和综合电化学分析的系统研究表明,Cu可以使for更早发生,Ag可以增强甲醛吸附,从而协同提高性能。最佳Cu3Ag7催化剂表现出优异的FOR性能,相对于可逆氢电极(VRHE)的起始电位为-0.05 V, HCOO-的法拉第效率在0.1 ~ 0.5 VRHE范围内超过90%。当与CO2RR耦合时,FOR||CO2RR系统实现了双侧HCOO-生产,在0.5 V的超低电池电压下实现了0.39 mmol h-1 cm-2的总HCOO产率,超过了之前报道的电化学HCOO-生产系统的性能。此外,本研究提出了一种通用的阳极策略,将FOR与一系列阴极反应相结合,为可持续电化学技术的进步提供了一种节能的化学合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信