{"title":"Metal-Insulator Transition Driven by the Interplay of Vacancies and Charge Orders in Square-Net Materials GdSbxTe2-x-δ.","authors":"Qun Wang,Yifang Jiang,Songyuan Geng,Hanpu Liang,Yunbo Wu,Risi Guo,Fangjie Chen,Kangjie Li,Xin Wang,Bin Cao,Keyu An,Shengtao Cui,Zhe Sun,Mao Ye,Zhengtai Liu,Changming Yue,Shiming Lei,Haoxiang Li","doi":"10.1002/adma.202510303","DOIUrl":null,"url":null,"abstract":"Engineering narrow-bandgap semiconductors remains a pivotal challenge for next-generation electronic and energy devices. Charge density wave (CDW) systems offer a promising platform for bandgap engineering. However, most 2D and 3D CDW systems remain metallic despite exhibiting Fermi surface nesting. Here, a doping-dependent metal-insulator transition (MIT) with tunable bandgaps is reported in square-net materials GdSbxTe2-x-δ and a cooperative interaction between CDWs and vacancies that drives the MIT is discovered. Angle-resolved photoemission spectroscopy (ARPES) reveals the MIT in the low Sb-content regime of GdSbxTe2-x-δ, with a maximum energy gap of Δ ≈ 98 meV at x = 0.16, corroborated by electrical transport measurements. Following the MIT, X-ray diffraction reveals a doping-dependent shift of the CDW wavevector toward a commensurate structure with q = 0.25 a*, concurrent with the appearance of Te vacancies in the square-net layers. Density functional theory (DFT) calculations attribute the gap formation to the ordered Te vacancies modulated by the 4×1×1 CDW superstructure, which suppresses the electronic states near the Fermi level. Contrasting with the partial gap scenarios in conventional CDW systems, this synergy between the CDW and the vacancy stabilizes the insulating phase, offering a distinct avenue for narrow bandgap engineering in electronic materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"99 1","pages":"e10303"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510303","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering narrow-bandgap semiconductors remains a pivotal challenge for next-generation electronic and energy devices. Charge density wave (CDW) systems offer a promising platform for bandgap engineering. However, most 2D and 3D CDW systems remain metallic despite exhibiting Fermi surface nesting. Here, a doping-dependent metal-insulator transition (MIT) with tunable bandgaps is reported in square-net materials GdSbxTe2-x-δ and a cooperative interaction between CDWs and vacancies that drives the MIT is discovered. Angle-resolved photoemission spectroscopy (ARPES) reveals the MIT in the low Sb-content regime of GdSbxTe2-x-δ, with a maximum energy gap of Δ ≈ 98 meV at x = 0.16, corroborated by electrical transport measurements. Following the MIT, X-ray diffraction reveals a doping-dependent shift of the CDW wavevector toward a commensurate structure with q = 0.25 a*, concurrent with the appearance of Te vacancies in the square-net layers. Density functional theory (DFT) calculations attribute the gap formation to the ordered Te vacancies modulated by the 4×1×1 CDW superstructure, which suppresses the electronic states near the Fermi level. Contrasting with the partial gap scenarios in conventional CDW systems, this synergy between the CDW and the vacancy stabilizes the insulating phase, offering a distinct avenue for narrow bandgap engineering in electronic materials.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.