Single-nucleus transcriptomics reveal the morphogenesis and artemisinin biosynthesis in Artemisia annua glandular trichomes.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minghui Zhang,Mingyu Li,Yanyan An,Chang Liu,Qiaojuan Zhao,Danfeng Zhang,Baiwei Pan,Hexin Tan
{"title":"Single-nucleus transcriptomics reveal the morphogenesis and artemisinin biosynthesis in Artemisia annua glandular trichomes.","authors":"Minghui Zhang,Mingyu Li,Yanyan An,Chang Liu,Qiaojuan Zhao,Danfeng Zhang,Baiwei Pan,Hexin Tan","doi":"10.1038/s41467-025-63770-y","DOIUrl":null,"url":null,"abstract":"Artemisinin, the key antimalarial drug, is synthesized in Artemisia annua glandular secretory trichomes (GSTs), yet their development and artemisinin's precise cellular origins are unclear. Utilizing single-nucleus RNA sequencing and spatial transcriptomics, we construct a high-resolution cellular atlas mapping metabolic dynamics across GST development. We define three developmental states: the initiation phase, transcriptional activation of core metabolic pathways establishes fundamental cellular machinery; the intermediate phase, marked lipid metabolism activation with coordinated fatty acid and wax biosynthesis, accompanied by active photosynthetic activity; the terminal differentiation phase, metabolite specialized through spatial compartmentalization of terpenoid and lipid biosynthetic pathways. Notably, we discover that six specific secretory cells within the 10-cell GSTs constitute the primary site for artemisinin production. We identify hundreds of hub genes potentially contributing to trichome development or artemisinin biosynthesis. Overall, this study systematically elucidates GST development and artemisinin biosynthesis, revealing its spatial production mechanism and providing essential cellular and genetic foundations for metabolic engineering and fundamental trichome biology.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":"8646"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63770-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Artemisinin, the key antimalarial drug, is synthesized in Artemisia annua glandular secretory trichomes (GSTs), yet their development and artemisinin's precise cellular origins are unclear. Utilizing single-nucleus RNA sequencing and spatial transcriptomics, we construct a high-resolution cellular atlas mapping metabolic dynamics across GST development. We define three developmental states: the initiation phase, transcriptional activation of core metabolic pathways establishes fundamental cellular machinery; the intermediate phase, marked lipid metabolism activation with coordinated fatty acid and wax biosynthesis, accompanied by active photosynthetic activity; the terminal differentiation phase, metabolite specialized through spatial compartmentalization of terpenoid and lipid biosynthetic pathways. Notably, we discover that six specific secretory cells within the 10-cell GSTs constitute the primary site for artemisinin production. We identify hundreds of hub genes potentially contributing to trichome development or artemisinin biosynthesis. Overall, this study systematically elucidates GST development and artemisinin biosynthesis, revealing its spatial production mechanism and providing essential cellular and genetic foundations for metabolic engineering and fundamental trichome biology.
单核转录组学揭示了青蒿腺毛的形态发生和青蒿素的生物合成。
青蒿素是一种关键的抗疟药物,是在青蒿腺分泌毛状体(GSTs)中合成的,但它们的发育和青蒿素的确切细胞起源尚不清楚。利用单核RNA测序和空间转录组学,我们构建了一个高分辨率的细胞图谱,绘制了GST发展过程中的代谢动力学。我们定义了三个发育阶段:起始阶段,核心代谢途径的转录激活建立了基本的细胞机制;中间阶段,脂质代谢激活,脂肪酸和蜡协同生物合成,光合活性活跃;分化末期,代谢产物通过萜类和脂类生物合成途径的空间区隔化而特化。值得注意的是,我们发现在10个细胞的GSTs中有6个特定的分泌细胞构成了青蒿素生产的主要位点。我们确定了数百个中枢基因,可能有助于毛状体的发育或青蒿素的生物合成。总的来说,本研究系统地阐明了GST的发育和青蒿素的生物合成,揭示了其空间产生机制,为代谢工程和基础毛生物学提供了必要的细胞和遗传基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信