Dipo Aldila, Chidozie Williams Chukwu, Eka D A Ginting, F Fatmawati, Faishal Farrel Herdicho, Mohammad Ivan Azis, S Sutrisno
{"title":"Backward bifurcation and periodic dynamics in a tuberculosis model with integrated control strategies.","authors":"Dipo Aldila, Chidozie Williams Chukwu, Eka D A Ginting, F Fatmawati, Faishal Farrel Herdicho, Mohammad Ivan Azis, S Sutrisno","doi":"10.3934/mbe.2025100","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present a unified mathematical model for tuberculosis (TB) that integrates key interventions: Mask use and media campaigns to raise community awareness and promote vaccine booster uptake. The model also incorporates slow-fast disease progression and limited treatment capacity. A mathematical analysis was conducted to determine the existence and stability of equilibrium points. From the mathematical analysis on the stability criteria of the TB-free equilibrium point, we show that TB can be eradicated if the basic reproduction number is below one. However, due to insufficient treatment capacity, a backward bifurcation may occur when the reproduction number equals one, enabling the coexistence of endemic and disease-free equilibria even when the reproduction number is below one. The parameter estimation is based on TB incidence data per 100,000 individuals in Indonesia. Sensitivity analysis reveald that although both interventions are effective, media campaigns combined with vaccine boosters are more impactful in reducing TB transmission than the use of masks. Numerical simulations further suggest the possibility of periodic outbreaks, indicating potential seasonal TB patterns. To explore adaptive intervention strategies, we extended the model using an optimal control framework. Our findings suggested that combined implementation of face masks and media campaigns is more effective than using either alone, particularly when the likelihood of rapid disease progression increases.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 10","pages":"2720-2760"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present a unified mathematical model for tuberculosis (TB) that integrates key interventions: Mask use and media campaigns to raise community awareness and promote vaccine booster uptake. The model also incorporates slow-fast disease progression and limited treatment capacity. A mathematical analysis was conducted to determine the existence and stability of equilibrium points. From the mathematical analysis on the stability criteria of the TB-free equilibrium point, we show that TB can be eradicated if the basic reproduction number is below one. However, due to insufficient treatment capacity, a backward bifurcation may occur when the reproduction number equals one, enabling the coexistence of endemic and disease-free equilibria even when the reproduction number is below one. The parameter estimation is based on TB incidence data per 100,000 individuals in Indonesia. Sensitivity analysis reveald that although both interventions are effective, media campaigns combined with vaccine boosters are more impactful in reducing TB transmission than the use of masks. Numerical simulations further suggest the possibility of periodic outbreaks, indicating potential seasonal TB patterns. To explore adaptive intervention strategies, we extended the model using an optimal control framework. Our findings suggested that combined implementation of face masks and media campaigns is more effective than using either alone, particularly when the likelihood of rapid disease progression increases.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).