Artificial intelligence in ventricular arrhythmias and sudden cardiac death: A guide for clinicians.

Q3 Medicine
Ibrahim Antoun, Xin Li, Ahmed Abdelrazik, Mahmoud Eldesouky, Kaung Myat Thu, Mokhtar Ibrahim, Harshil Dhutia, Riyaz Somani, G André Ng
{"title":"Artificial intelligence in ventricular arrhythmias and sudden cardiac death: A guide for clinicians.","authors":"Ibrahim Antoun, Xin Li, Ahmed Abdelrazik, Mahmoud Eldesouky, Kaung Myat Thu, Mokhtar Ibrahim, Harshil Dhutia, Riyaz Somani, G André Ng","doi":"10.1016/j.ipej.2025.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Sudden cardiac death (SCD) from ventricular arrhythmias (VAs) remains a leading cause of mortality worldwide. Traditional risk stratification, primarily based on left ventricular ejection fraction (LVEF) and other coarse metrics, often fails to identify a large subset of patients at risk and frequently leads to unnecessary device implantations. Advances in artificial intelligence (AI) offer new strategies to improve both long-term SCD risk prediction and near-term VAs forecasting. In this review, we discuss how AI algorithms applied to the 12-lead electrocardiogram (ECG) can identify subtle risk markers in conditions such as hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and coronary artery disease (CAD), often outperforming conventional risk models. We also explore the integration of AI with cardiac imaging, such as scar quantification on cardiac magnetic resonance (CMR) and fibrosis mapping, to enhance the identification of the arrhythmogenic substrate. Furthermore, we investigate the application of data from implantable cardioverter-defibrillators (ICDs) and wearable devices to predict ventricular tachycardia (VT) or ventricular fibrillation (VF) events before they occur, thereby advancing care toward real-time prevention. Amid these innovations, we address the medicolegal and ethical implications of AI-driven automated alerts in arrhythmia care, highlighting when clinicians can trust AI predictions. Future directions include multimodal AI fusion to personalize SCD risk assessment, as well as AI-guided VT ablation planning through imaging-based digital heart models. This review provides a comprehensive overview for general medical readers, focusing on peer-reviewed advances globally in the emerging intersection of AI, VAs, and SCD prevention.</p>","PeriodicalId":35900,"journal":{"name":"Indian Pacing and Electrophysiology Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Pacing and Electrophysiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ipej.2025.09.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Sudden cardiac death (SCD) from ventricular arrhythmias (VAs) remains a leading cause of mortality worldwide. Traditional risk stratification, primarily based on left ventricular ejection fraction (LVEF) and other coarse metrics, often fails to identify a large subset of patients at risk and frequently leads to unnecessary device implantations. Advances in artificial intelligence (AI) offer new strategies to improve both long-term SCD risk prediction and near-term VAs forecasting. In this review, we discuss how AI algorithms applied to the 12-lead electrocardiogram (ECG) can identify subtle risk markers in conditions such as hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), and coronary artery disease (CAD), often outperforming conventional risk models. We also explore the integration of AI with cardiac imaging, such as scar quantification on cardiac magnetic resonance (CMR) and fibrosis mapping, to enhance the identification of the arrhythmogenic substrate. Furthermore, we investigate the application of data from implantable cardioverter-defibrillators (ICDs) and wearable devices to predict ventricular tachycardia (VT) or ventricular fibrillation (VF) events before they occur, thereby advancing care toward real-time prevention. Amid these innovations, we address the medicolegal and ethical implications of AI-driven automated alerts in arrhythmia care, highlighting when clinicians can trust AI predictions. Future directions include multimodal AI fusion to personalize SCD risk assessment, as well as AI-guided VT ablation planning through imaging-based digital heart models. This review provides a comprehensive overview for general medical readers, focusing on peer-reviewed advances globally in the emerging intersection of AI, VAs, and SCD prevention.

人工智能在室性心律失常和心源性猝死中的应用:临床医生指南。
室性心律失常(VAs)引起的心源性猝死(SCD)仍然是世界范围内死亡的主要原因。传统的风险分层,主要基于左室射血分数(LVEF)和其他粗略的指标,往往不能识别出大量的高危患者,并经常导致不必要的装置植入。人工智能(AI)的进步为改善长期SCD风险预测和近期VAs预测提供了新的策略。在这篇综述中,我们讨论了应用于12导联心电图(ECG)的人工智能算法如何识别肥厚性心肌病(HCM)、心律失常性右室心肌病(ARVC)和冠状动脉疾病(CAD)等疾病的微妙风险标记,通常优于传统的风险模型。我们还探索了人工智能与心脏成像的整合,如心脏磁共振(CMR)疤痕量化和纤维化制图,以增强对心律失常底物的识别。此外,我们研究了植入式心律转复除颤器(icd)和可穿戴设备的数据在室性心动过速(VT)或心室颤动(VF)事件发生之前的应用,从而推动了实时预防的护理。在这些创新中,我们解决了人工智能驱动的心律失常护理自动警报的医学和伦理影响,强调了临床医生何时可以信任人工智能预测。未来的发展方向包括多模式人工智能融合,以个性化SCD风险评估,以及通过基于成像的数字心脏模型,人工智能引导VT消融计划。这篇综述为普通医学读者提供了一个全面的概述,重点是在AI、VAs和SCD预防的新兴交叉领域,全球同行评审的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Pacing and Electrophysiology Journal
Indian Pacing and Electrophysiology Journal Medicine-Cardiology and Cardiovascular Medicine
CiteScore
2.20
自引率
0.00%
发文量
91
审稿时长
61 days
期刊介绍: Indian Pacing and Electrophysiology Journal is a peer reviewed online journal devoted to cardiac pacing and electrophysiology. Editorial Advisory Board includes eminent personalities in the field of cardiac pacing and electrophysiology from Asia, Australia, Europe and North America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信