Dong-Yang Wang, Tie Yang, Chong-Tao Zhang, Peng-Chao Zhan, Zhen-Xing Miao, Bing-Lin Li, Hang Yang
{"title":"Artificial intelligence in carotid computed tomography angiography plaque detection: Decade of progress and future perspectives.","authors":"Dong-Yang Wang, Tie Yang, Chong-Tao Zhang, Peng-Chao Zhan, Zhen-Xing Miao, Bing-Lin Li, Hang Yang","doi":"10.4329/wjr.v17.i9.110447","DOIUrl":null,"url":null,"abstract":"<p><p>The application of artificial intelligence (AI) in carotid atherosclerotic plaque detection <i>via</i> computed tomography angiography (CTA) has significantly advanced over the past decade. This mini-review consolidates recent innovations in deep learning architectures, domain adaptation techniques, and automated plaque characterization methodologies. Hybrid models, such as residual U-Net-Pyramid Scene Parsing Network, exhibit a remarkable precision of 80.49% in plaque segmentation, outperforming radiologists in diagnostic efficiency by reducing analysis time from minutes to mere seconds. Domain-adaptive frameworks, such as Lesion Assessment through Tracklet Evaluation, demonstrate robust performance across heterogeneous imaging datasets, achieving an area under the curve (AUC) greater than 0.88. Furthermore, novel approaches integrating U-Net and Efficient-Net architectures, enhanced by Bayesian optimization, have achieved impressive correlation coefficients (0.89) for plaque quantification. AI-powered CTA also enables high-precision three-dimensional vascular segmentation, with a Dice coefficient of 0.9119, and offers superior cardiovascular risk stratification compared to traditional Agatston scoring, yielding AUC values of 0.816 <i>vs</i> 0.729 at a 15-year follow-up. These breakthroughs address key challenges in plaque motion analysis, with systolic retractive motion biomarkers successfully identifying 80% of vulnerable plaques. Looking ahead, future directions focus on enhancing the interpretability of AI models through explainable AI and leveraging federated learning to mitigate data heterogeneity. This mini-review underscores the transformative potential of AI in carotid plaque assessment, offering substantial implications for stroke prevention and personalized cerebrovascular management strategies.</p>","PeriodicalId":23819,"journal":{"name":"World journal of radiology","volume":"17 9","pages":"110447"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4329/wjr.v17.i9.110447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The application of artificial intelligence (AI) in carotid atherosclerotic plaque detection via computed tomography angiography (CTA) has significantly advanced over the past decade. This mini-review consolidates recent innovations in deep learning architectures, domain adaptation techniques, and automated plaque characterization methodologies. Hybrid models, such as residual U-Net-Pyramid Scene Parsing Network, exhibit a remarkable precision of 80.49% in plaque segmentation, outperforming radiologists in diagnostic efficiency by reducing analysis time from minutes to mere seconds. Domain-adaptive frameworks, such as Lesion Assessment through Tracklet Evaluation, demonstrate robust performance across heterogeneous imaging datasets, achieving an area under the curve (AUC) greater than 0.88. Furthermore, novel approaches integrating U-Net and Efficient-Net architectures, enhanced by Bayesian optimization, have achieved impressive correlation coefficients (0.89) for plaque quantification. AI-powered CTA also enables high-precision three-dimensional vascular segmentation, with a Dice coefficient of 0.9119, and offers superior cardiovascular risk stratification compared to traditional Agatston scoring, yielding AUC values of 0.816 vs 0.729 at a 15-year follow-up. These breakthroughs address key challenges in plaque motion analysis, with systolic retractive motion biomarkers successfully identifying 80% of vulnerable plaques. Looking ahead, future directions focus on enhancing the interpretability of AI models through explainable AI and leveraging federated learning to mitigate data heterogeneity. This mini-review underscores the transformative potential of AI in carotid plaque assessment, offering substantial implications for stroke prevention and personalized cerebrovascular management strategies.