Kira A Perzel Mandell, Sean K Simmons, Ajay Nadig, Zohreh Farsi, Wei-Chao Huang, Sameer Aryal, Min Jee Kwon, Bryan Song, Kira Brenner, Nate Shepard, Ally A Nicolella, Lesley D O'Brien, Aron H Lichtman, Joshua Z Levin, Morgan Sheng
{"title":"Meta-analysis of the brain transcriptomes of multiple genetic mouse models of schizophrenia highlights dysregulation in striatum and thalamus.","authors":"Kira A Perzel Mandell, Sean K Simmons, Ajay Nadig, Zohreh Farsi, Wei-Chao Huang, Sameer Aryal, Min Jee Kwon, Bryan Song, Kira Brenner, Nate Shepard, Ally A Nicolella, Lesley D O'Brien, Aron H Lichtman, Joshua Z Levin, Morgan Sheng","doi":"10.1038/s41398-025-03563-5","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a severe mental illness with high heritability, but its underlying mechanisms are poorly understood. We meta-analyzed large-scale brain transcriptomic data from mice harboring individual loss-of-function mutations in seven schizophrenia risk genes (Akap11, Dagla, Gria3, Grin2a, Sp4, Srrm2, Zmym2). While all studied brain regions were affected, the striatum and the thalamus emerged as key brain regions of convergence. Striatum showed downregulation of synapse- and oxidative phosphorylation-related gene sets in all models. In the thalamus, mutants separated into two groups based on transcriptomic phenotype: synapse-related gene sets were upregulated in mutants with only schizophrenia and bipolar association, and were downregulated in mutants that are associated with developmental delay/intellectual disability in addition to schizophrenia. Overall, our meta-analysis reveals convergence and divergence in brain transcriptomic phenotype in these schizophrenia genetic models, supports the involvement of striatal disturbance and synapse dysfunction in schizophrenia, and points to a key role of the thalamus.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"345"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03563-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophrenia is a severe mental illness with high heritability, but its underlying mechanisms are poorly understood. We meta-analyzed large-scale brain transcriptomic data from mice harboring individual loss-of-function mutations in seven schizophrenia risk genes (Akap11, Dagla, Gria3, Grin2a, Sp4, Srrm2, Zmym2). While all studied brain regions were affected, the striatum and the thalamus emerged as key brain regions of convergence. Striatum showed downregulation of synapse- and oxidative phosphorylation-related gene sets in all models. In the thalamus, mutants separated into two groups based on transcriptomic phenotype: synapse-related gene sets were upregulated in mutants with only schizophrenia and bipolar association, and were downregulated in mutants that are associated with developmental delay/intellectual disability in addition to schizophrenia. Overall, our meta-analysis reveals convergence and divergence in brain transcriptomic phenotype in these schizophrenia genetic models, supports the involvement of striatal disturbance and synapse dysfunction in schizophrenia, and points to a key role of the thalamus.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.