Richard Schweitzer, Thomas Seel, Jörg Raisch, Martin Rolfs
{"title":"Early visual signatures and benefits of intra-saccadic motion streaks.","authors":"Richard Schweitzer, Thomas Seel, Jörg Raisch, Martin Rolfs","doi":"10.1371/journal.pcbi.1013544","DOIUrl":null,"url":null,"abstract":"<p><p>Eye movements routinely induce motion streaks as they shift visual projections across the retina at high speeds. To investigate the visual consequences of intra-saccadic motion streaks, we co-registered eye tracking and EEG while gaze-contingently shifting target objects during saccades, presenting either continuous, 'streaky' or apparent, step-like motion in four directions. We found significant reductions of secondary saccade latency, as well as improved decoding of the post-saccadic target location from the EEG signal when motion streaks were available. These signals arose as early as 50 ms after saccade offset and had a clear occipital topography. Using a physiologically plausible visual processing model, we provide evidence that the target's motion trajectory is coded in orientation-selective channels and that speed of gaze correction was linked to the visual dynamics arising from the combination of saccadic and target motion, providing a parsimonious explanation of the behavioral benefits of intra-saccadic motion streaks.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013544"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013544","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Eye movements routinely induce motion streaks as they shift visual projections across the retina at high speeds. To investigate the visual consequences of intra-saccadic motion streaks, we co-registered eye tracking and EEG while gaze-contingently shifting target objects during saccades, presenting either continuous, 'streaky' or apparent, step-like motion in four directions. We found significant reductions of secondary saccade latency, as well as improved decoding of the post-saccadic target location from the EEG signal when motion streaks were available. These signals arose as early as 50 ms after saccade offset and had a clear occipital topography. Using a physiologically plausible visual processing model, we provide evidence that the target's motion trajectory is coded in orientation-selective channels and that speed of gaze correction was linked to the visual dynamics arising from the combination of saccadic and target motion, providing a parsimonious explanation of the behavioral benefits of intra-saccadic motion streaks.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.