A unipolar head gradient for high-field MRI without encoding ambiguity.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Markus Weiger, Johan Overweg, Franciszek Hennel, Emily Louise Baadsvik, Samuel Bianchi, Oskar Björkqvist, Roger Luechinger, Jens Metzger, Eric Seth Michael, Thomas Schmid, Lauro Singenberger, Urs Sturzenegger, Erik Oskam, Gerrit Vissers, Jos Koonen, Wout Schuth, Jeroen Koeleman, Martino Borgo, Klaas Paul Pruessmann
{"title":"A unipolar head gradient for high-field MRI without encoding ambiguity.","authors":"Markus Weiger, Johan Overweg, Franciszek Hennel, Emily Louise Baadsvik, Samuel Bianchi, Oskar Björkqvist, Roger Luechinger, Jens Metzger, Eric Seth Michael, Thomas Schmid, Lauro Singenberger, Urs Sturzenegger, Erik Oskam, Gerrit Vissers, Jos Koonen, Wout Schuth, Jeroen Koeleman, Martino Borgo, Klaas Paul Pruessmann","doi":"10.1002/mrm.70098","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>MRI gradients with a conventional, bipolar design generally face a trade-off among performance, encoding ambiguity, and radiofrequency selectivity used to circumvent said ambiguity. This problem is particularly limiting in cutting-edge brain imaging performed at field strengths ≥ 7 T and using high-performance head gradients.</p><p><strong>Methods: </strong>To address this issue, the present work proposes to fundamentally eliminate the encoding ambiguity in head gradients by using a unipolar z-gradient design that takes advantage of the signal-free range on one side of the imaging volume. This concept is demonstrated by implementation of a unipolar head gradient for operation at 7 T.</p><p><strong>Results: </strong>Imaging in phantoms and in vivo demonstrates elimination of backfolding due to encoding ambiguity. At the same time, the unipolar design achieves efficiency on par with conventional bipolar design, resulting in high amplitude and slew-rate performance.</p><p><strong>Conclusion: </strong>The prospect of gradient systems based on a unipolar design holds promise for all advanced neuroimaging that demands high gradient performance. It will make the greatest difference at 7 T and beyond, where the absence of ambiguity removes a key concern and constraint in terms of radiofrequency behavior and instrumentation.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: MRI gradients with a conventional, bipolar design generally face a trade-off among performance, encoding ambiguity, and radiofrequency selectivity used to circumvent said ambiguity. This problem is particularly limiting in cutting-edge brain imaging performed at field strengths ≥ 7 T and using high-performance head gradients.

Methods: To address this issue, the present work proposes to fundamentally eliminate the encoding ambiguity in head gradients by using a unipolar z-gradient design that takes advantage of the signal-free range on one side of the imaging volume. This concept is demonstrated by implementation of a unipolar head gradient for operation at 7 T.

Results: Imaging in phantoms and in vivo demonstrates elimination of backfolding due to encoding ambiguity. At the same time, the unipolar design achieves efficiency on par with conventional bipolar design, resulting in high amplitude and slew-rate performance.

Conclusion: The prospect of gradient systems based on a unipolar design holds promise for all advanced neuroimaging that demands high gradient performance. It will make the greatest difference at 7 T and beyond, where the absence of ambiguity removes a key concern and constraint in terms of radiofrequency behavior and instrumentation.

无编码歧义的高场MRI单极头梯度。
目的:采用传统双极设计的MRI梯度通常面临性能、编码模糊性和用于规避模糊性的射频选择性之间的权衡。这个问题尤其局限于在场强≥7 T和使用高性能头部梯度时进行的尖端脑成像。方法:为了解决这一问题,本工作提出通过使用单极z梯度设计,利用成像体积一侧的无信号范围,从根本上消除头部梯度中的编码歧义。这一概念是通过实现单极头梯度在7 T操作证明。结果:幻影和活体成像显示由于编码模糊而消除了后折叠。同时,单极设计实现了与传统双极设计相当的效率,从而实现了高振幅和慢速性能。结论:基于单极设计的梯度系统的前景为所有需要高梯度性能的高级神经成像提供了希望。它将在7t及以上产生最大的差异,其中没有模糊性消除了射频行为和仪器方面的关键问题和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信