Efficient CRISPR-based genome editing for inducible degron systems to enable temporal control of protein function in large double-stranded DNA virus genomes.

IF 2.6 4区 生物学 Q2 MICROBIOLOGY
Journal of Microbiology Pub Date : 2025-09-01 Epub Date: 2025-08-29 DOI:10.71150/jm.2504008
Kihye Shin, Eui Tae Kim
{"title":"Efficient CRISPR-based genome editing for inducible degron systems to enable temporal control of protein function in large double-stranded DNA virus genomes.","authors":"Kihye Shin, Eui Tae Kim","doi":"10.71150/jm.2504008","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9-based gene editing enables precise genetic modifications. However, its application to human cytomegalovirus (HCMV) remains challenging due to the large size of the viral genome and the essential roles of key regulatory genes. Here, we establish an optimized CRISPR-Cas9 system for precise labeling and functional analysis of HCMV immediate early (IE) genes. By integrating a multifunctional cassette encoding an auxin-inducible degron (AID), a self-cleaving peptide (P2A), and GFP into the viral genome via homology-directed repair (HDR), we achieved efficient knock-ins without reliance on bacterial artificial chromosome (BAC) cloning, a labor-intensive and time-consuming approach. We optimized delivery strategies, donor template designs, and component ratios to enhance HDR efficiency, significantly improving knock-in success rates. This system enables real-time fluorescent tracking and inducible protein degradation, allowing temporal control of essential viral proteins through auxin-mediated depletion. Our approach provides a powerful tool for dissecting the dynamic roles of viral proteins throughout the HCMV life cycle, facilitating a deeper understanding of viral pathogenesis and potential therapeutic targets.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 9","pages":"e2504008"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2504008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas9-based gene editing enables precise genetic modifications. However, its application to human cytomegalovirus (HCMV) remains challenging due to the large size of the viral genome and the essential roles of key regulatory genes. Here, we establish an optimized CRISPR-Cas9 system for precise labeling and functional analysis of HCMV immediate early (IE) genes. By integrating a multifunctional cassette encoding an auxin-inducible degron (AID), a self-cleaving peptide (P2A), and GFP into the viral genome via homology-directed repair (HDR), we achieved efficient knock-ins without reliance on bacterial artificial chromosome (BAC) cloning, a labor-intensive and time-consuming approach. We optimized delivery strategies, donor template designs, and component ratios to enhance HDR efficiency, significantly improving knock-in success rates. This system enables real-time fluorescent tracking and inducible protein degradation, allowing temporal control of essential viral proteins through auxin-mediated depletion. Our approach provides a powerful tool for dissecting the dynamic roles of viral proteins throughout the HCMV life cycle, facilitating a deeper understanding of viral pathogenesis and potential therapeutic targets.

高效的基于crispr的可诱导脱菌系统基因组编辑,使大双链DNA病毒基因组中蛋白质功能的时间控制成为可能。
基于crispr - cas9的基因编辑可以实现精确的基因修饰。然而,由于病毒基因组的大尺寸和关键调控基因的重要作用,其在人巨细胞病毒(HCMV)中的应用仍然具有挑战性。在这里,我们建立了一个优化的CRISPR-Cas9系统,用于HCMV即时早期(IE)基因的精确标记和功能分析。通过同源定向修复(HDR),将一个编码生长素诱导脱粒(AID)、自裂肽(P2A)和GFP的多功能盒整合到病毒基因组中,我们实现了高效的敲入,而不依赖于细菌人工染色体(BAC)克隆,这是一种劳动密集型和耗时的方法。我们优化了送药策略、供体模板设计和成分比例,以提高HDR效率,显著提高敲入成功率。该系统能够实时荧光跟踪和诱导蛋白降解,允许通过生长素介导的耗竭对必需病毒蛋白进行时间控制。我们的方法为剖析病毒蛋白在整个HCMV生命周期中的动态作用提供了一个强大的工具,有助于更深入地了解病毒的发病机制和潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microbiology
Journal of Microbiology 生物-微生物学
CiteScore
5.70
自引率
3.30%
发文量
0
审稿时长
3 months
期刊介绍: Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信