Rémi Vuillemot, Jean-Luc Pellequer, Sergei Grudinin
{"title":"Deciphering conformational dynamics in AFM data using fast nonlinear NMA and FFT-based search with AFMFit.","authors":"Rémi Vuillemot, Jean-Luc Pellequer, Sergei Grudinin","doi":"10.1038/s42003-025-08365-5","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic Force Microscopy (AFM) offers a unique opportunity to study the conformational dynamics of proteins in near-physiological conditions at the single-molecule level. However, interpreting the two-dimensional molecular surfaces of multiple molecules measured in AFM experiments as three-dimensional conformational dynamics of a single molecule poses a significant challenge. Here, we present AFMfit, a flexible fitting procedure that deforms an input atomic model to match multiple AFM observations. The fitted models form a conformational ensemble that unambiguously describes the AFM experiment. Our method uses a new fast fitting algorithm based on the nonlinear Normal Mode Analysis (NMA) method NOLB to associate each molecule with its conformational state. AFMfit processes conformations of hundreds of AFM images of a single molecule in a few minutes on a single workstation, enabling analysis of larger datasets, including high-speed (HS)-AFM. We demonstrate the applications of our methods to synthetic and experimental AFM/HS-AFM data that include activated factor V and a membrane-embedded transient receptor potential channel TRPV3. AFMfit is an open-source Python package available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/ .</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1381"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08365-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic Force Microscopy (AFM) offers a unique opportunity to study the conformational dynamics of proteins in near-physiological conditions at the single-molecule level. However, interpreting the two-dimensional molecular surfaces of multiple molecules measured in AFM experiments as three-dimensional conformational dynamics of a single molecule poses a significant challenge. Here, we present AFMfit, a flexible fitting procedure that deforms an input atomic model to match multiple AFM observations. The fitted models form a conformational ensemble that unambiguously describes the AFM experiment. Our method uses a new fast fitting algorithm based on the nonlinear Normal Mode Analysis (NMA) method NOLB to associate each molecule with its conformational state. AFMfit processes conformations of hundreds of AFM images of a single molecule in a few minutes on a single workstation, enabling analysis of larger datasets, including high-speed (HS)-AFM. We demonstrate the applications of our methods to synthetic and experimental AFM/HS-AFM data that include activated factor V and a membrane-embedded transient receptor potential channel TRPV3. AFMfit is an open-source Python package available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/ .
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.