{"title":"Breast neoplasm epithelial-mesenchymal transition and cytokines: a systematic review.","authors":"Yian Chen, Haining Ding, Jiaqing Song, Xiufei Gao","doi":"10.1186/s12935-025-03973-x","DOIUrl":null,"url":null,"abstract":"<p><p>A crucial aspect of the association involving inflammation and the development of cancer is the ability of cancer cells to undergo a transition into mesenchymal cells. The process is referred to as epithelial-mesenchymal transition (EMT). Cytokines and chemokines, which are inflammatory agents found in the carcinoma microenvironment, induce epithelial-mesenchymal transition (EMT) changes in malignant cells. Evaluating the role of cytokines in EMT in breast carcinoma and investigating their potential therapeutic implications is the objective of this comprehensive research report. The following search criteria were applied to the Cochrane, Embase, PubMed, and Web of Science databases: \"cytokines,\" \"the cytokines,\" \"chemokines,\" \"EMT,\" \"epithelial-mesenchymal transition or transformation,\" \"breast tumor,\" \"breast carcinoma,\" and \"breast cancer.\" A body of research comprising 54 articles has demonstrated that a number of cytokines, including TNF-α, TGF-β, and IL-6, contribute to the promotion of EMT alterations in breast tumors. The epithelial markers E-cadherin and β-catenin were downregulated as a consequence of morphological changes induced by EMT; conversely, the mesenchymal markers N-cadherin, vimentin, and fibronectin were upregulated. The EMT transforming factors (EMT-TF) TWIST/ZEB/SNAI1/SNAI2 were upregulated. Pharmaceuticals with the capacity to specifically target cytokines or their epithelial-mesenchymal transition (EMT) signalling pathways have the potential to significantly reduce treatment resistance, impede the progression of cancer, and prevent the recurrence of breast cancer. Epithelial-mesenchymal transition (EMT) induced by cytokines is a factor in breast cancer progression and metastasis.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"323"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03973-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A crucial aspect of the association involving inflammation and the development of cancer is the ability of cancer cells to undergo a transition into mesenchymal cells. The process is referred to as epithelial-mesenchymal transition (EMT). Cytokines and chemokines, which are inflammatory agents found in the carcinoma microenvironment, induce epithelial-mesenchymal transition (EMT) changes in malignant cells. Evaluating the role of cytokines in EMT in breast carcinoma and investigating their potential therapeutic implications is the objective of this comprehensive research report. The following search criteria were applied to the Cochrane, Embase, PubMed, and Web of Science databases: "cytokines," "the cytokines," "chemokines," "EMT," "epithelial-mesenchymal transition or transformation," "breast tumor," "breast carcinoma," and "breast cancer." A body of research comprising 54 articles has demonstrated that a number of cytokines, including TNF-α, TGF-β, and IL-6, contribute to the promotion of EMT alterations in breast tumors. The epithelial markers E-cadherin and β-catenin were downregulated as a consequence of morphological changes induced by EMT; conversely, the mesenchymal markers N-cadherin, vimentin, and fibronectin were upregulated. The EMT transforming factors (EMT-TF) TWIST/ZEB/SNAI1/SNAI2 were upregulated. Pharmaceuticals with the capacity to specifically target cytokines or their epithelial-mesenchymal transition (EMT) signalling pathways have the potential to significantly reduce treatment resistance, impede the progression of cancer, and prevent the recurrence of breast cancer. Epithelial-mesenchymal transition (EMT) induced by cytokines is a factor in breast cancer progression and metastasis.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.