Sehong Park, Hyun-Woo Je, Yujin Cha, Boncheol Gu, Yeojeong Cho, Jin-Il Kim, Ji Won Seo, Seung Bum Kim, Jino Son, Moonsuk Hur, Changmin Sung, Min-Kyu Oh, Hahk-Soo Kang
{"title":"Exploring the biosynthetic potential of Korean Actinobacteria for antibacterial metabolite discovery.","authors":"Sehong Park, Hyun-Woo Je, Yujin Cha, Boncheol Gu, Yeojeong Cho, Jin-Il Kim, Ji Won Seo, Seung Bum Kim, Jino Son, Moonsuk Hur, Changmin Sung, Min-Kyu Oh, Hahk-Soo Kang","doi":"10.71150/jm.2504002","DOIUrl":null,"url":null,"abstract":"<p><p>Actinobacteria, a phylum of Gram-positive bacteria, are renowned for their remarkable ability to produce antibacterial natural products. The National Institute of Biological Resources (NIBR) of Korea maintains a collection of Korean native actinobacteria. In this study, we explored the phylogenetic and biosynthetic diversity of the NIBR actinobacteria collection to assess its potential as a source of new antibacterial natural products. A 16S rDNA-based phylogenetic analysis revealed a high level of genetic diversity within the collection, with a predominance of Streptomyces, along with rare actinobacterial genera such as Kitasatospora and Micromonospora. Additionally, genetic network analysis of biosynthetic gene clusters (BGCs) from 15 sequenced NIBR actinobacterial strains demonstrated extensive BGC diversity, with many clusters identified as cryptic. Screening of culture extracts for antibacterial activity, followed by dereplication of active extracts, suggested the presence of potentially novel antibacterial natural products. Activity-guided isolation and whole-genome sequencing of the active strain KU57 led to the isolation of one new and three known svetamycin congeners along with their BGC. Overall, our findings highlight the NIBR actinobacteria collection as a valuable source for the discovery of new antibacterial natural products.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 9","pages":"e2504002"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2504002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Actinobacteria, a phylum of Gram-positive bacteria, are renowned for their remarkable ability to produce antibacterial natural products. The National Institute of Biological Resources (NIBR) of Korea maintains a collection of Korean native actinobacteria. In this study, we explored the phylogenetic and biosynthetic diversity of the NIBR actinobacteria collection to assess its potential as a source of new antibacterial natural products. A 16S rDNA-based phylogenetic analysis revealed a high level of genetic diversity within the collection, with a predominance of Streptomyces, along with rare actinobacterial genera such as Kitasatospora and Micromonospora. Additionally, genetic network analysis of biosynthetic gene clusters (BGCs) from 15 sequenced NIBR actinobacterial strains demonstrated extensive BGC diversity, with many clusters identified as cryptic. Screening of culture extracts for antibacterial activity, followed by dereplication of active extracts, suggested the presence of potentially novel antibacterial natural products. Activity-guided isolation and whole-genome sequencing of the active strain KU57 led to the isolation of one new and three known svetamycin congeners along with their BGC. Overall, our findings highlight the NIBR actinobacteria collection as a valuable source for the discovery of new antibacterial natural products.
期刊介绍:
Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.