{"title":"GDF15 attenuates myocardial infarction-induced injury by preserving mitochondrial function and suppressing oxidative stress.","authors":"Xiaogang Yuan, Cheng Wang, Haiyan Zhu","doi":"10.1186/s40001-025-03144-8","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction, a serious cardiovascular disease, is still a major cause of morbidity and mortality worldwide. Growth differentiation factor-15, a stress-responsive cytokine, has been involved in cardiac pathophysiology, but its exact role in myocardial infarction remains controversial. This study aimed to clarify the mechanisms underlying the cardioprotective effects of GDF-15 in myocardial infarction. By using a combination of in vivo and in vitro methods, including immunofluorescence staining, echocardiography, RNA sequencing, and high-resolution respirometry, we showed that GDF-15 expression is significantly upregulated in infarcted myocardium and its deficiency aggravates cardiac injury. Mechanistically, GDF-15 deficiency impairs mitochondrial function and energy metabolism under hypoxic stress, as evidenced by changes in mitochondrial membrane potential and respiratory parameters. Moreover, we identified that GDF-15 suppresses hypoxia-induced reactive oxygen species generation through activation of the AMPK signaling pathway. Therapeutic administration of exogenous GDF-15 reduces myocardial injury, hypoxic stress, and fibrosis after myocardial infarction, suggesting its potential as a therapeutic target. These findings collectively demonstrate that GDF-15 plays a crucial role in cardiac protection during myocardial infarction by regulating mitochondrial function, energy metabolism, and oxidative stress. Our results provide novel insights into the molecular mechanisms of GDF-15-mediated cardioprotection and suggest its potential as a therapeutic intervention for myocardial infarction. Future studies should focus on translational research to evaluate the clinical efficacy of GDF-15-based therapies in myocardial infarction patients.</p>","PeriodicalId":11949,"journal":{"name":"European Journal of Medical Research","volume":"30 1","pages":"903"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40001-025-03144-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial infarction, a serious cardiovascular disease, is still a major cause of morbidity and mortality worldwide. Growth differentiation factor-15, a stress-responsive cytokine, has been involved in cardiac pathophysiology, but its exact role in myocardial infarction remains controversial. This study aimed to clarify the mechanisms underlying the cardioprotective effects of GDF-15 in myocardial infarction. By using a combination of in vivo and in vitro methods, including immunofluorescence staining, echocardiography, RNA sequencing, and high-resolution respirometry, we showed that GDF-15 expression is significantly upregulated in infarcted myocardium and its deficiency aggravates cardiac injury. Mechanistically, GDF-15 deficiency impairs mitochondrial function and energy metabolism under hypoxic stress, as evidenced by changes in mitochondrial membrane potential and respiratory parameters. Moreover, we identified that GDF-15 suppresses hypoxia-induced reactive oxygen species generation through activation of the AMPK signaling pathway. Therapeutic administration of exogenous GDF-15 reduces myocardial injury, hypoxic stress, and fibrosis after myocardial infarction, suggesting its potential as a therapeutic target. These findings collectively demonstrate that GDF-15 plays a crucial role in cardiac protection during myocardial infarction by regulating mitochondrial function, energy metabolism, and oxidative stress. Our results provide novel insights into the molecular mechanisms of GDF-15-mediated cardioprotection and suggest its potential as a therapeutic intervention for myocardial infarction. Future studies should focus on translational research to evaluate the clinical efficacy of GDF-15-based therapies in myocardial infarction patients.
期刊介绍:
European Journal of Medical Research publishes translational and clinical research of international interest across all medical disciplines, enabling clinicians and other researchers to learn about developments and innovations within these disciplines and across the boundaries between disciplines. The journal publishes high quality research and reviews and aims to ensure that the results of all well-conducted research are published, regardless of their outcome.