Stepped-Current-Controlled Evolution of Cu(OH)2/CuO Tandem Nanostructure for Efficient Photothermal Conversion.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Haiyun Zhang, Kehinde Kassim, Rong Tang, Lu Li, Zhihao Li, Yuan Yuan, Kaiqi Zhao, Yajun Wu, Haijian Wang, Xuehua Zhang, Kaixin Jiang, Ben Bin Xu, Lidong Sun
{"title":"Stepped-Current-Controlled Evolution of Cu(OH)<sub>2</sub>/CuO Tandem Nanostructure for Efficient Photothermal Conversion.","authors":"Haiyun Zhang, Kehinde Kassim, Rong Tang, Lu Li, Zhihao Li, Yuan Yuan, Kaiqi Zhao, Yajun Wu, Haijian Wang, Xuehua Zhang, Kaixin Jiang, Ben Bin Xu, Lidong Sun","doi":"10.1002/smtd.202501354","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal conversion is an important compensation to the current energy system, which is capable of converting the sunlight into thermal energy. Copper serves as an excellent heat conductor but exhibits limited absorption over the solar spectrum, even with oxide coatings upon annealing. Herein, vertically aligned copper oxides are tailored on the copper surfaces by electrochemical anodization. The current transient renders a unique stepped profile, which corresponds to the structure evolution from a double-layered stack, i.e., the Cu(OH)<sub>2</sub> nanowires sitting atop the CuO nanosheets, to a single-layered CuO nanosheets. The as-anodized CuO nanosheets impart strong light absorption in the range of 200-1200 nm. Under one sun illumination, the water rises up to 102.6 °C in 20 min inside copper tubes with the CuO coatings, as compared to the 60.6 °C without the coatings. Under frozen conditions, the CuO nanosheets also result in a rapid de-icing process in just 700 s, in obvious contrast to the 1200 s for pristine copper. This is attributed to the high photothermal conversion efficiency of 73.6% for the CuO coatings, being more than doubled with respect to the copper. The photothermal coatings may find important applications in seawater desalination, evaporation-induced electricity generation, hydrogen evolution reaction, etc.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01354"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501354","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal conversion is an important compensation to the current energy system, which is capable of converting the sunlight into thermal energy. Copper serves as an excellent heat conductor but exhibits limited absorption over the solar spectrum, even with oxide coatings upon annealing. Herein, vertically aligned copper oxides are tailored on the copper surfaces by electrochemical anodization. The current transient renders a unique stepped profile, which corresponds to the structure evolution from a double-layered stack, i.e., the Cu(OH)2 nanowires sitting atop the CuO nanosheets, to a single-layered CuO nanosheets. The as-anodized CuO nanosheets impart strong light absorption in the range of 200-1200 nm. Under one sun illumination, the water rises up to 102.6 °C in 20 min inside copper tubes with the CuO coatings, as compared to the 60.6 °C without the coatings. Under frozen conditions, the CuO nanosheets also result in a rapid de-icing process in just 700 s, in obvious contrast to the 1200 s for pristine copper. This is attributed to the high photothermal conversion efficiency of 73.6% for the CuO coatings, being more than doubled with respect to the copper. The photothermal coatings may find important applications in seawater desalination, evaporation-induced electricity generation, hydrogen evolution reaction, etc.

用于高效光热转换的Cu(OH)2/CuO串联纳米结构的阶梯电流控制演化。
光热转换是对现有能源系统的一种重要补偿,它能够将太阳光转化为热能。铜作为一种优良的热导体,但在太阳光谱上表现出有限的吸收,即使在退火后有氧化物涂层。在这里,垂直排列的铜氧化物通过电化学阳极氧化被定制在铜表面。电流瞬态呈现出独特的阶梯式结构,这与Cu(OH)2纳米线位于CuO纳米片上的双层堆叠结构到单层CuO纳米片的演变相对应。阳极氧化后的CuO纳米片在200- 1200nm范围内具有很强的光吸收能力。在一次阳光照射下,有CuO涂层的铜管内的水在20分钟内上升到102.6°C,而没有涂层的水则上升到60.6°C。在冰冻条件下,CuO纳米片也能在700秒内快速除冰,这与原始铜的1200秒形成明显对比。这是由于CuO涂层的光热转换效率高达73.6%,是铜涂层的两倍多。光热涂层在海水淡化、蒸发发电、析氢反应等方面具有重要的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信