Thermodynamic Labeling Enables CO2 Prediction in Polymers of Intrinsic Microporosity under Small Data Constraints.

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Johnathan W Campbell, Ashley P DeRegis, Jeffrey A Laub, David S Sholl, Konstantinos D Vogiatzis
{"title":"Thermodynamic Labeling Enables CO<sub>2</sub> Prediction in Polymers of Intrinsic Microporosity under Small Data Constraints.","authors":"Johnathan W Campbell, Ashley P DeRegis, Jeffrey A Laub, David S Sholl, Konstantinos D Vogiatzis","doi":"10.1002/marc.202500490","DOIUrl":null,"url":null,"abstract":"<p><p>Porous polymers, particularly polymers of intrinsic microporosity (PIMs), combine high surface areas with tunable functionalities, positioning them as promising materials for post-combustion CO<sub>2</sub> capture technologies. A key physical parameter of these materials is the isosteric heat of adsorption (Q<sub>st</sub>), which quantifies the interaction strength between CO<sub>2</sub> molecules and the polymer framework. In this work, we demonstrate that data-driven models constructed from computationally determined physicochemical descriptors can accurately predict Q<sub>st</sub> at room temperature using a modestly sized dataset of 75 PIMs. Among the multitude of machine learning models evaluated, Kernel Ridge Regression (KRR) utilizing the radial basis function (RBF) yielded notable training and testing coefficients of determination (R<sup>2</sup> scores) of 0.9854 and 0.9653, respectively. Additionally, an ensemble model was constructed using the KRR RBF, Lasso Regression, and XGBoost, achieving an average training R<sup>2</sup> score of 0.9844 and a testing score of 0.9651. By optimizing model parameters through Bayesian methods and interpreting feature importance using SHAP analysis, we identified the molecular characteristics that most strongly influence the prediction of CO<sub>2</sub>-PIMs isosteric heats of adsorption. Using a Lasso model, we screened a synthetic PIM parameter space by varying six thermochemical descriptors, revealing density as the most influential factor and identifying optimal combinations to enhance predicted isosteric heats of adsorption. These results demonstrate that accurate predictive workflows can be developed using relatively small datasets for designing polymeric adsorbents by identifying key molecular descriptors that correlate with the isosteric heat of adsorption. Overall, this adaptable methodology can be extended to future gas-separation challenges, helping pave the way for faster discovery of advanced polymeric membranes for capturing CO<sub>2</sub>.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00490"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500490","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Porous polymers, particularly polymers of intrinsic microporosity (PIMs), combine high surface areas with tunable functionalities, positioning them as promising materials for post-combustion CO2 capture technologies. A key physical parameter of these materials is the isosteric heat of adsorption (Qst), which quantifies the interaction strength between CO2 molecules and the polymer framework. In this work, we demonstrate that data-driven models constructed from computationally determined physicochemical descriptors can accurately predict Qst at room temperature using a modestly sized dataset of 75 PIMs. Among the multitude of machine learning models evaluated, Kernel Ridge Regression (KRR) utilizing the radial basis function (RBF) yielded notable training and testing coefficients of determination (R2 scores) of 0.9854 and 0.9653, respectively. Additionally, an ensemble model was constructed using the KRR RBF, Lasso Regression, and XGBoost, achieving an average training R2 score of 0.9844 and a testing score of 0.9651. By optimizing model parameters through Bayesian methods and interpreting feature importance using SHAP analysis, we identified the molecular characteristics that most strongly influence the prediction of CO2-PIMs isosteric heats of adsorption. Using a Lasso model, we screened a synthetic PIM parameter space by varying six thermochemical descriptors, revealing density as the most influential factor and identifying optimal combinations to enhance predicted isosteric heats of adsorption. These results demonstrate that accurate predictive workflows can be developed using relatively small datasets for designing polymeric adsorbents by identifying key molecular descriptors that correlate with the isosteric heat of adsorption. Overall, this adaptable methodology can be extended to future gas-separation challenges, helping pave the way for faster discovery of advanced polymeric membranes for capturing CO2.

热力学标记使CO2预测在小数据约束下的聚合物的固有微孔隙度。
多孔聚合物,特别是固有微孔聚合物(PIMs),结合了高表面积和可调功能,使其成为燃烧后二氧化碳捕获技术的有前途的材料。这些材料的一个关键物理参数是等等吸附热(Qst),它量化了CO2分子与聚合物框架之间的相互作用强度。在这项工作中,我们证明了由计算确定的物理化学描述符构建的数据驱动模型可以使用75个pim的中等规模数据集准确预测室温下的Qst。在评估的众多机器学习模型中,利用径向基函数(RBF)的核脊回归(KRR)产生了显著的训练和测试决定系数(R2分数),分别为0.9854和0.9653。此外,利用KRR RBF、Lasso回归和XGBoost构建了一个集成模型,平均训练R2得分为0.9844,测试得分为0.9651。通过贝叶斯方法优化模型参数,并利用SHAP分析解释特征重要性,我们确定了对co2 - pim等容吸附热预测影响最大的分子特征。使用Lasso模型,我们通过改变6个热化学描述符来筛选合成PIM参数空间,揭示密度是影响最大的因素,并确定最佳组合以提高预测的等等吸附热。这些结果表明,通过识别与等等吸附热相关的关键分子描述符,可以使用相对较小的数据集开发准确的预测工作流程,用于设计聚合物吸附剂。总的来说,这种适应性强的方法可以扩展到未来的气体分离挑战,有助于为更快地发现用于捕获二氧化碳的先进聚合物膜铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信