Joshua Rousseau, Ting-Yun Wang, Samantha McClendon, Dakota Ortega, Mark Orlando, Scott C Beeman, Benjamin B Bartelle, Kuei-Chun Wang
{"title":"Monocyte-Mimetic Contrast Agent Enables Targeted and Sensitive Magnetic Resonance Imaging of Atherosclerotic Lesions.","authors":"Joshua Rousseau, Ting-Yun Wang, Samantha McClendon, Dakota Ortega, Mark Orlando, Scott C Beeman, Benjamin B Bartelle, Kuei-Chun Wang","doi":"10.1002/adhm.202502001","DOIUrl":null,"url":null,"abstract":"<p><p>Superparamagnetic iron oxide nanoparticles (SPION) are investigated as T2 contrast agents for magnetic resonance imaging (MRI) of atherosclerosis. However, their nonspecific biodistribution and low plaque-site bioavailability limit their translational potential. To address these challenges, monocyte membrane-cloaked polymeric nanoparticles encapsulating SPION (MoNP-SPION) to enhance plaque-specific accumulation is developed. Physicochemical characterization confirmed successful MoNP-SPION formulation, with a hydrodynamic size of ≈271 nm, SPION loading efficiency of 8.5%, and r2 relaxivity of 397.7 mM<sup>-1</sup> s<sup>-1</sup>. In vitro assays and phantom imaging demonstrated that MoNP-SPION exhibited significantly enhanced targeting efficiency toward TNFα-activated endothelial cells while minimizing uptake by monocytes and macrophages compared to its constituents. T2*-weighted ex vivo MRI confirmed the preferential accumulation of MoNP-SPION in atheroprone regions while sparing lesion-free areas of the vasculature. In vivo MRI of atherosclerotic mice revealed that MoNP-SPION, but not the uncoated counterpart or free SPION, induced strong T2*-weighted signal reductions at the carotid bifurcations and aortic root, areas with significant plaque development, confirming its ability to enhance atherosclerosis imaging. Furthermore, toxicity assessments demonstrated the biocompatibility of MoNP-SPION. Together, the findings highlight MoNP-SPION as a promising biomimetic contrast agent for improving MRI-based diagnosis of atherosclerosis, with potential applications in monitoring plaque progression and treatment outcomes.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02001"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are investigated as T2 contrast agents for magnetic resonance imaging (MRI) of atherosclerosis. However, their nonspecific biodistribution and low plaque-site bioavailability limit their translational potential. To address these challenges, monocyte membrane-cloaked polymeric nanoparticles encapsulating SPION (MoNP-SPION) to enhance plaque-specific accumulation is developed. Physicochemical characterization confirmed successful MoNP-SPION formulation, with a hydrodynamic size of ≈271 nm, SPION loading efficiency of 8.5%, and r2 relaxivity of 397.7 mM-1 s-1. In vitro assays and phantom imaging demonstrated that MoNP-SPION exhibited significantly enhanced targeting efficiency toward TNFα-activated endothelial cells while minimizing uptake by monocytes and macrophages compared to its constituents. T2*-weighted ex vivo MRI confirmed the preferential accumulation of MoNP-SPION in atheroprone regions while sparing lesion-free areas of the vasculature. In vivo MRI of atherosclerotic mice revealed that MoNP-SPION, but not the uncoated counterpart or free SPION, induced strong T2*-weighted signal reductions at the carotid bifurcations and aortic root, areas with significant plaque development, confirming its ability to enhance atherosclerosis imaging. Furthermore, toxicity assessments demonstrated the biocompatibility of MoNP-SPION. Together, the findings highlight MoNP-SPION as a promising biomimetic contrast agent for improving MRI-based diagnosis of atherosclerosis, with potential applications in monitoring plaque progression and treatment outcomes.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.