Nanosecond Discharge in Non-Boiling Liquid Nitrogen

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Aleksey A. Petrov;Sergey Yu. Savinov;Ravil Kh. Amirov;Igor S. Samoylov
{"title":"Nanosecond Discharge in Non-Boiling Liquid Nitrogen","authors":"Aleksey A. Petrov;Sergey Yu. Savinov;Ravil Kh. Amirov;Igor S. Samoylov","doi":"10.1109/TDEI.2025.3571687","DOIUrl":null,"url":null,"abstract":"Nanosecond discharge has been studied in non-boiling liquid nitrogen. The discharge is initiated in the gap in the central conductor of a coaxial waveguide with an impedance of <inline-formula> <tex-math>$50~\\Omega $ </tex-math></inline-formula>. The gap varied within 10–<inline-formula> <tex-math>$100~\\mu $ </tex-math></inline-formula>m. The dielectric of the waveguide and the discharge medium is non-boiling liquid nitrogen at atmospheric pressure and temperature 65 K. The amplitude of the voltage pulse is +/–12–25 kV, the duration is 7 ns, the voltage rise time is 150 ps. It is found that the leading edge of the discharge current is less than 80 ps. According to estimates, the electron ionization rate <inline-formula> <tex-math>$\\nu _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$7.5\\cdot 10^{{10}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> and the ionization rate constant <inline-formula> <tex-math>${k} _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$4.2\\cdot 10^{-{12}}$ </tex-math></inline-formula> cm3<inline-formula> <tex-math>${\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> in non-boiling liquid nitrogen at 65 K. A passing electromagnetic coupling wave with amplitude about 10 kV and duration 150 ps is detected behind the discharge gap in the waveguide. The formation of electromagnetic coupling wave is numerically demonstrated. The dependence of the discharge delay time on the electric field in the gap is measured. The formation of <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m size erosion craters is found at the surface of the electrodes demonstrating the possible role of the micro-explosive processes in the discharge mechanism.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2783-2787"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11008446/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosecond discharge has been studied in non-boiling liquid nitrogen. The discharge is initiated in the gap in the central conductor of a coaxial waveguide with an impedance of $50~\Omega $ . The gap varied within 10– $100~\mu $ m. The dielectric of the waveguide and the discharge medium is non-boiling liquid nitrogen at atmospheric pressure and temperature 65 K. The amplitude of the voltage pulse is +/–12–25 kV, the duration is 7 ns, the voltage rise time is 150 ps. It is found that the leading edge of the discharge current is less than 80 ps. According to estimates, the electron ionization rate $\nu _{i}$ is more than $7.5\cdot 10^{{10}}$ ${\mathrm {s}}^{-{1}}$ and the ionization rate constant ${k} _{i}$ is more than $4.2\cdot 10^{-{12}}$ cm3 ${\mathrm {s}}^{-{1}}$ in non-boiling liquid nitrogen at 65 K. A passing electromagnetic coupling wave with amplitude about 10 kV and duration 150 ps is detected behind the discharge gap in the waveguide. The formation of electromagnetic coupling wave is numerically demonstrated. The dependence of the discharge delay time on the electric field in the gap is measured. The formation of $20~\mu $ m size erosion craters is found at the surface of the electrodes demonstrating the possible role of the micro-explosive processes in the discharge mechanism.
非沸腾液氮的纳秒放电
对非沸腾液氮的纳秒放电进行了研究。放电是在阻抗为的同轴波导的中心导体的间隙中开始的 $50~\Omega $ . 差距在10 -以内变化 $100~\mu $ m.波导的电介质和放电介质为常压和温度为65k的未沸腾的液氮。电压脉冲的幅值为+/ -12-25 kV,持续时间为7 ns,电压上升时间为150 ps,发现放电电流的前缘小于80 ps $\nu _{i}$ 大于 $7.5\cdot 10^{{10}}$ ${\mathrm {s}}^{-{1}}$ 电离速率常数 ${k} _{i}$ 大于 $4.2\cdot 10^{-{12}}$ 立方厘米 ${\mathrm {s}}^{-{1}}$ 在不沸腾的液氮中,温度为65k。在波导放电间隙后检测到一个振幅约为10 kV、持续时间约为150 ps的通过电磁耦合波。对电磁耦合波的形成进行了数值模拟。测量了放电延迟时间与间隙电场的关系。的形成 $20~\mu $ 在电极表面发现了M大小的侵蚀坑,表明微爆炸过程可能在放电机制中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信